Skip to main content

From Gene-Scale to Genome-Scale Phylogenetics: the Data Flood In, but the Challenges Remain

  • Protocol
Phylogenomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 422))

Abstract

An important goal of phylogenetics is to be able to consistently and accurately reconstruct the historical patterns of cladogenesis among major organismic groups. Gene-scale phylogenetics is insufficient to attain this goal owing to the presence of poor resolution and incongruence in single- and few-gene phylogenies. The increasing availability of genomescale amounts of data promises to overcome the insufficiency of gene-scale phylogenetics and uncover the genealogical tapestry uniting all living organisms with unprecedented accuracy. Here, we argue that a vast increase in data size alone—although necessary—may not be sufficient to achieve the desired accuracy for three reasons: (i) the existence of short stems in the tree of life, (ii) the saturation of phylogenetic signal in molecular sequences, and (iii) the effect of systematic error on phylogenetic inference. Devising strategies to ameliorate the effect of such challenges on sequence evolution will be critical to the success of current efforts to reconstruct the tree of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Darwin, C. (1859) On the Origin of Species, John Murray, London.

    Google Scholar 

  2. Cracraft, J. and Donoghue, M. J. (eds) (2004) Assembling the Tree of Life, Oxford University Press, Oxford.

    Google Scholar 

  3. Yates, T. L., Salazar-Bravo, J., and Dragoo, J. W. (2004) In Assembling the Tree of Life (Cracraft, J. and Donoghue, M. J., eds), pp. 7–17, Oxford University Press, Oxford.

    Google Scholar 

  4. Dawkins, R. (2003) A Devil’s Chaplain, Houghton Mifflin, New York.

    Google Scholar 

  5. Fleischmann, R. D., Adams, M. D., White, O., et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512.

    Article  CAS  PubMed  Google Scholar 

  6. Goffeau, A., Barrell, B. G., Bussey, H., et al. (1996) Life with 6000 genes. Science 274, 546, 563–567.

    Article  CAS  PubMed  Google Scholar 

  7. Liolios, K., Tavernarakis, N., Hugenholtz, P., and Kyrpides, N. C. (2006) The Genomes On Line Database (GOLD) v.2: a monitor of genome projects worldwide. Nucleic Acids Res. 34, D332–D334.

    Article  CAS  PubMed  Google Scholar 

  8. Rokas, A., Kruger, D., and Carroll, S. B. (2005) Animal evolution and the molecular signature of radiations compressed in time. Science 310, 1933–1938.

    Article  PubMed  Google Scholar 

  9. Driskell, A. C., Ane, C., Burleigh, J. G., McMahon, M. M., O’Meara, B. C., and Sanderson, M. J. (2004) Prospects for building the tree of life from large sequence databases. Science 306, 1172–1174.

    Article  CAS  PubMed  Google Scholar 

  10. Ciccarelli, F. D., Doerks, T., von Mering, C., Creevey, C. J., Snel, B., and Bork, P. (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287.

    Article  CAS  PubMed  Google Scholar 

  11. Takezaki, N., Figueroa, F., Zaleska-Rutczynska, Z., Takahata, N., and Klein, J. (2004) The phylogenetic relationship of tetrapod, coelacanth, and lungfish revealed by the sequences of 44 nuclear genes. Mol. Biol. Evol. 21, 1512–1524.

    Article  CAS  PubMed  Google Scholar 

  12. Rokas, A. and Carroll, S. B. (2005) More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Mol. Biol. Evol. 22, 1337–1344.

    Article  CAS  PubMed  Google Scholar 

  13. Rokas, A., King, N., Finnerty, J., and Carroll, S. B. (2003) Conflicting phylogenetic signals at the base of the metazoan tree. Evol. Dev. 5, 346–359.

    Article  CAS  PubMed  Google Scholar 

  14. Berbee, M. L., Carmean, D. A., and Winka, K. (2000) Ribosomal DNA and resolution of branching order among the ascomycota: how many nucleotides are enough? Mol. Phylogenet. Evol. 17, 337–344.

    Article  CAS  PubMed  Google Scholar 

  15. Rokas, A., Williams, B. L., King, N., and Carroll, S. B. (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425, 798–804.

    Article  CAS  PubMed  Google Scholar 

  16. Kopp, A. and True, J. R. (2002) Phylogeny of the Oriental Drosophila melanogaster species group: a multilocus reconstruction. Syst. Biol. 51, 786–805.

    Article  PubMed  Google Scholar 

  17. Hwang, U. W., Friedrich, M., Tautz, D., Park, C. J., and Kim, W. (2001) Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature 413, 154–157.

    Article  CAS  PubMed  Google Scholar 

  18. Giribet, G., Edgecombe, G. D., and Wheeler, W. C. (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413, 157–161.

    Article  CAS  PubMed  Google Scholar 

  19. Satta, Y., Klein, J., and Takahata, N. (2000) DNA archives and our nearest relative: the trichotomy problem revisited. Mol. Phylog. Evol. 14, 259–275.

    Article  CAS  Google Scholar 

  20. Murphy, W. J., Pevzner, P. A., and O’Brien, S. J. (2004) Mammalian phylogenomics comes of age. Trends Genet. 20, 631–639.

    Article  CAS  PubMed  Google Scholar 

  21. Springer, M. S., Stanhope, M. J., Madsen, O., and de Jong, W. W. (2004) Molecules consolidate the placental mammal tree. Trends Ecol. Evol. 19, 430–438.

    Article  PubMed  Google Scholar 

  22. Jennings, W. B. and Edwards, S. V. (2005) Speciational history of Australian grass finches (Poephila) inferred from thirty gene trees. Evolution 59, 2033–2047.

    CAS  PubMed  Google Scholar 

  23. Gogarten, J. P. and Townsend, J. P. (2005) Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Microbiol. 3, 679–687.

    Article  CAS  PubMed  Google Scholar 

  24. Simpson, G. G. (1953) The Major Features of Evolution, Columbia University Press, New York.

    Google Scholar 

  25. Lanyon, S. M. (1988) The stochastic mode of molecular evolution: what consequences for systematic investigations? Auk 105, 565–573.

    Google Scholar 

  26. Hoelzer, G. A. and Melnick, D. J. (1994) Patterns of speciation and limits to phylogenetic resolution. Trends Ecol. Evol. 9, 104–107.

    Article  CAS  PubMed  Google Scholar 

  27. Kimura, M. (1983) The Neutral Theory of Molecular Evolution, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  28. Penny, D., McComish, B. J., Charleston, M. A., and Hendy, M. D. (2001) Mathematical elegance with biochemical realism: the covarion model of molecular evolution. J. Mol. Evol. 53, 711–723.

    Article  CAS  PubMed  Google Scholar 

  29. Mossel, E. and Steel, M. (2005) In Mathematics of Evolution and Phylogeny (Gascuel, O., ed.), pp. 384–412, Oxford University Press, New York.

    Google Scholar 

  30. Naylor, G. J. P. and Brown, W. M. (1998) Amphioxus mitochondrial DNA, chordate phylogeny, and the limits of inference based on comparisons of sequences. Syst. Biol. 47, 61–76.

    Article  CAS  PubMed  Google Scholar 

  31. Averof, M., Rokas, A., Wolfe, K. H., and Sharp, P. M. (2000) Evidence for a high frequency of simultaneous double-nucleotide substitutions. Science 287, 1283–1286.

    Article  CAS  PubMed  Google Scholar 

  32. Ayala, F. J. (1999) Molecular clock mirages. Bioessays 21, 71–75.

    Article  CAS  PubMed  Google Scholar 

  33. Fay, J. C., Wyckoff, G. J., and Wu, C. I. (2002) Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature 415, 1024–1026.

    Article  CAS  PubMed  Google Scholar 

  34. Smith, N. G. and Eyre-Walker, A. (2002) Adaptive protein evolution in Drosophila. Nature 415, 1022–1024.

    Article  CAS  PubMed  Google Scholar 

  35. Wolf, Y. I., Rogozin, I. B., and Koonin, E. V. (2004) Coelomata and not Ecdysozoa: evidence from genome-wide phylogenetic analysis. Genome Res. 14, 29–36.

    Article  CAS  PubMed  Google Scholar 

  36. Blair, J. E., Ikeo, K., Gojobori, T., and Hedges, S. B. (2002) The evolutionary position of nematodes. BMC Evol. Biol. 2, 7.

    Article  PubMed  Google Scholar 

  37. Dopazo, H. and Dopazo, J. (2005) Genome-scale evidence of the nematode-arthropod clade. Genome Biol. 6, R41.

    Article  PubMed  Google Scholar 

  38. Philip, G. K., Creevey, C. J., and McInerney, J. O. (2005) The Opisthokonta and the Ecdysozoa may not be clades: stronger support for the grouping of plant and animal than for animal and fungi and stronger support for the Coelomata than Ecdysozoa. Mol. Biol. Evol. 22, 1175–1184.

    Article  CAS  PubMed  Google Scholar 

  39. Phillips, M. J., Delsuc, F. D., and Penny, D. (2004) Genome-scale phylogeny and the detection of systematic biases. Mol. Biol. Evol. 21, 1455–1458.

    Article  CAS  PubMed  Google Scholar 

  40. Graybeal, A. (1998) Is it better to add taxa or characters to a difficult phylogenetic problem? Syst. Biol. 47, 9–17.

    Article  CAS  PubMed  Google Scholar 

  41. Kim, J. (1998) Large-scale phylogenies and measuring the performance of phylogenetic estimators. Syst. Biol. 47, 43–60.

    Article  CAS  PubMed  Google Scholar 

  42. Bininda-Emonds, O. R., Brady, S. G., Kim, J., and Sanderson, M. J. (2001) Scaling of accuracy in extremely large phylogenetic trees. Pac. Symp. Biocomput. 547–558.

    Google Scholar 

  43. Poe, S. and Swofford, D. L. (1999) Taxon sampling revisited. Nature 398, 299–300.

    Article  CAS  PubMed  Google Scholar 

  44. Zwickl, D. J. and Hillis, D. M. (2002) Increased taxon sampling greatly reduces phylogenetic error. Syst. Biol. 51, 588–598.

    Article  PubMed  Google Scholar 

  45. Rosenberg, M. S. and Kumar, S. (2001) Incomplete taxon sampling is not a problem for phylogenetic inference. Proc. Natl Acad. Sci. USA 98, 10,751–10,756.

    Article  CAS  PubMed  Google Scholar 

  46. Kurtzman, C. P. and Robnett, C. J. (2003) Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res. 3, 417–432.

    Article  CAS  PubMed  Google Scholar 

  47. Nei, M. and Glazko, G. V. (2002) Estimation of divergence times for a few mammalian and several primate species. J. Hered. 93, 157–164.

    Article  CAS  PubMed  Google Scholar 

  48. Planet, P. J. (2006) Tree disagreement: measuring and testing incongruence in phylogenies. J. Biomed. Inform. 39, 86–102.

    Article  CAS  PubMed  Google Scholar 

  49. Head, I. M., Saunders, J. R., and Pickup, R. W. (1998) Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb. Ecol. 35, 1–21.

    Article  CAS  PubMed  Google Scholar 

  50. Rokas, A. and Holland, P. W. H. (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol. Evol. 15, 454–459.

    Article  PubMed  Google Scholar 

  51. Rosenberg, N. A. (2002) The probability of topological concordance of gene trees and species trees. Theor. Popul. Biol. 61, 225–247.

    Article  PubMed  Google Scholar 

  52. Funk, D. J. and Omland, K. E. (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 34, 397–423.

    Article  Google Scholar 

  53. May, R. M. (2004) Tomorrow’s taxonomy: collecting new species in the field will remain the rate-limiting step. Phil. Trans. R. Soc. Lond. B Biol. Sci. 359, 733–734.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Rokas, A., Chatzimanolis, S. (2008). From Gene-Scale to Genome-Scale Phylogenetics: the Data Flood In, but the Challenges Remain. In: Murphy, W.J. (eds) Phylogenomics. Methods in Molecular Biology™, vol 422. Humana Press. https://doi.org/10.1007/978-1-59745-581-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-581-7_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-764-8

  • Online ISBN: 978-1-59745-581-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics