The Pros and Cons of Predicting Protein Contact Maps

  • Lisa Bartoli
  • Emidio Capriotti
  • Piero Fariselli
  • Pier Luigi Martelli
  • Rita Casadio
Part of the Methods in Molecular Biology™ book series (MIMB, volume 413)


Is there any reason why we should predict contact maps (CMs)? The question is one of the several ‘NP-hard’ questions that arise when striving for feasible solutions of the protein folding problem. At some point, theoreticians started thinking that a possible alternative to an unsolvable problem was to predict a simplified version of the protein structure: a CM. In this chapter, we will clarify that whenever problems are difficult they remain at least as difficult in the process of finding approximate solutions or heuristic approaches. However, humans rarely give up, as it is stimulating to find solutions in the face of difficulties. CMs of proteins are an interesting and useful representation of protein structures. These two-dimensional representations capture all the important features of a protein fold. We will review the general characteristics of CMs and the methods developed to study and predict them, and we will highlight some new ideas on how to improve CM predictions.


Protein structure prediction Protein contacts Small world Structure reconstruction Machine learning Contact map Protein folding 



We thank MIUR for the following grants: PNR-2003 grant delivered to PF, a PNR 2001–2003 (FIRB art.8) and PNR 2003 projects (FIRB art.8) on Bioinformatics for Genomics and Proteomics and LIBI-Laboratorio Internazionale di BioInformatica, both delivered to RC. This work was also supported by the Biosapiens Network of Excellence project (a grant of the European Unions VI Framework Programme).


  1. 1.
    Havel, T. F. (1998). Distance geometry: theory, algorithms, and chemical applications. Encyclopedia of Computational Chemistry. John Wiley & Sons, New York.Google Scholar
  2. 2.
    Vendruscolo, M. and Domany, E. (1999). Protein folding using contact maps. arXiv cond-mat, 9901215.Google Scholar
  3. 3.
    Bohr, J., Bohr, H., Brunak, S., Cotterill, R. M., Fredholm, H., Lautrup, B. and Petersen, S. B. (1993). Protein structures from distance inequalities. Journal of Molecular Biology 231, 861–869.CrossRefPubMedGoogle Scholar
  4. 4.
    Fariselli, P., Olmea, O., Valencia, A. and Casadio, R. (2001). Progress in predicting inter-residue contacts of proteins with neural networks and correlated mutations. Proteins Suppl 5, 157–162.Google Scholar
  5. 5.
    Galaktionov, S. G. and Marshall, G. R. (1994). 27th Annual Hawaii International Conference on System Sciences (HICSS-27), Maui, Hawaii.Google Scholar
  6. 6.
    Baldi, P. and Brunak S. (2001). Bioinformatics: The Machine Learning Approach, A Bradford Book, Second edition. MIT Press, Cambridge.Google Scholar
  7. 7.
    Goldman, D., Istrail, S. and Papadimitriou, C. (1999). Algorithmic aspects of protein structure similarity. Proceedings of the 40th IEEE Symposium on Foundations of Computer Science, New York, (USA), 512–522.Google Scholar
  8. 8.
    Fariselli, P., Olmea, O., Valencia, A. and Casadio, R. (2001). Prediction of contact maps with neural networks and correlated mutations. Protein Engineering 14, 835–843.CrossRefPubMedGoogle Scholar
  9. 9.
    Porto, M., Bastolla, U., Roman, H. E. and Vendruscolo, M. (2004). Reconstruction of protein structures from a vectorial representation. Physical Review Letters 92, 218101.CrossRefPubMedGoogle Scholar
  10. 10.
    Pollastri, G., Baldi, P., Fariselli, P. and Casadio, R. (2002). Prediction of coordination number and relative solvent accessibility in proteins. Proteins 47(2), 142–153.CrossRefPubMedGoogle Scholar
  11. 11.
    Goebel, U., Sander, C., Schneider, R. and Valencia, A. (1994). Correlated mutations and residue contacts in proteins. Proteins 18, 309–317.CrossRefGoogle Scholar
  12. 12.
    Olmea, O. and Valencia, A. (1997). Improving contact predictions by the combination of correlated mutations and other sources of sequence information. Folding & Design 2, S25–S32.CrossRefGoogle Scholar
  13. 13.
    Fariselli, P. and Casadio, R. (1999). A neural network based predictor of residue contacts in proteins. Protein Engineering 12, 15–21.CrossRefPubMedGoogle Scholar
  14. 14.
    Punta, M. and Rost, B. (2005). PROFcon: novel prediction of long-range contacts. Bioinformatics 21, 2960–2968.CrossRefPubMedGoogle Scholar
  15. 15.
    Bystroff, C. and Shao, Y. (2002). Fully automated ab initio protein structure prediction using I-SITES, HMMSTR and ROSETTA. Bioinformatics 18 Suppl 1, S54–S61.PubMedGoogle Scholar
  16. 16.
    Zhao, Y. and Karypis, G. (2003). 3rd IEEE International Conference on Bioinformatics and Bioengineering (BIBE).Google Scholar
  17. 17.
    MacCallum, R. M. (2004). Striped sheets and protein contact prediction. Bioinformatics 20 Suppl 1, I224–I231.CrossRefPubMedGoogle Scholar
  18. 18.
    Pollastri, G. and Baldi, P. (2002). Prediction of contact maps by GIOHMMs and recurrent neural networks using lateral propagation from all four cardinal corners. Bioinformatics 18 Suppl 1, S62–S70.PubMedGoogle Scholar
  19. 19.
    Vullo, A., Walsh, I. and Pollastri, G. (2006). A two-stage approach for improved prediction of residue contact maps. BMC Bioinformatics 7, 180.CrossRefPubMedGoogle Scholar
  20. 20.
    Eyrich, V. A., Przybylski, D., Koh, I. Y., Grana, O., Pazos, F., Valencia, A. and Rost, B. (2003). CAFASP3 in the spotlight of EVA. Proteins 53 Suppl 6, 548–560.CrossRefPubMedGoogle Scholar
  21. 21.
    Grana, O., Baker, D., MacCallum, R. M., Meiler, J., Punta, M., Rost, B., Tress, M. L. and Valencia, A. (2005). CASP6 assessment of contact prediction. Proteins 61 Suppl 7, 214–224.CrossRefPubMedGoogle Scholar
  22. 22.
    Barabasi, A. L. (2003). Linked: The New Science of Networks, Perseus Publishing, Cambridge, Massachusetts.Google Scholar
  23. 23.
    Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ’small-world’ networks. Nature 393, 440–442.CrossRefPubMedGoogle Scholar
  24. 24.
    Vendruscolo, M., Dokholyan, N. V., Paci, E. and Karplus, M. (2002). Small-world view of the amino acids that play a key role in protein folding. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 65, 061910.CrossRefPubMedGoogle Scholar
  25. 25.
    Watts, D. J. (1999). Small Worlds. The Dynamics of Networks Between Order and Randomness, Princeton University Press, Princeton, New Jersey.Google Scholar
  26. 26.
    Vendruscolo, M. and Domany, E. (1998). Efficient dynamics in the space of contact maps. Folding & Design 3, 329–336.CrossRefGoogle Scholar
  27. 27.
    Andricioaei, I., Voter, A. F. and Straub, J. E. (2001). Smart Darting Monte Carlo. The Journal of Chemical Physics 114, 6994–7000.CrossRefGoogle Scholar
  28. 28.
    Atilgan, A. R., Akan, P. and Baysal, C. (2004). Small-world communication of residues and significance for protein dynamics. Biophysical Journal 86, 85–91.CrossRefPubMedGoogle Scholar
  29. 29.
    Bagler, G. and Sinha, S. (2005). Network properties of protein structures. Physica A 346, 27–33.CrossRefGoogle Scholar
  30. 30.
    Greene, L. H. and Higman, V. A. (2003). Uncovering network systems within protein structures. Journal of Molecular Biology 334, 781–791.CrossRefPubMedGoogle Scholar
  31. 31.
    Barabasi, A. L. and Albert, R. (1999). Emergence of scaling in random networks. Science 286, 509–512.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc 2008

Authors and Affiliations

  • Lisa Bartoli
  • Emidio Capriotti
  • Piero Fariselli
  • Pier Luigi Martelli
  • Rita Casadio

There are no affiliations available

Personalised recommendations