Skip to main content

Modeling Cerebral Ischemia in Neuroproteomics

  • Protocol
  • First Online:
Neuroproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 566))

Summary

Protein changes induced by traumatic or ischemic brain injury can serve as diagnostic markers as well as therapeutic targets for neuroprotection. The focus of this chapter is to provide a representative overview of preclinical brain injury and proteomics analysis protocols for evaluation and discovery of novel biomarkers. Detailed surgical procedures have been provided for inducing MCAo and implantation of chronic indwelling cannulas for drug delivery. Sample collection and tissue processing techniques for collection of blood, CSF, and brain are also described including standard biochemical methodology for the proteomic analysis of these tissues.

The dynamics of proteomic analysis is a multistep process comprising sample preparation, separation, quantification, and identification of proteins. Our approach is to separate proteins first by two-dimensional gel electrophoresis according to charge and molecular mass. Proteins are then fragmented and analyzed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Identification of proteins can be achieved by comparing the mass-to-charge data to protein sequences in respective databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lipton, P. (1999) Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568.

    PubMed  CAS  Google Scholar 

  2. Stanimirovic, D., and Satoh, K. (2000) Inflammatory mediators of cerebral endothelium: a role in ischemic brain inflammation. Brain. Pathol. 10, 113–126.

    Article  PubMed  CAS  Google Scholar 

  3. Won, S. J., Kim, D. Y., and Gwag, B. J. (2002) Cellular and molecular pathways of ischemic neuronal death. J. Biochem. Mol. Biol. 35, 67–86.

    Article  PubMed  CAS  Google Scholar 

  4. Danton, G. H., and Dietrich, W. D. (2003) Inflammatory mechanisms after ischemia and stroke. J. Neuropathol. Exp. Neurol. 62, 127–136.

    PubMed  CAS  Google Scholar 

  5. Aurell, A., Rosengren, L.E., Karlsson, B., Olsson, J.E., Zbornikova, V., and Haglid, K.G. (1991) Determination of S-100 and glial fibrillary acidic protein concentrations in cerebrospinal fluid after brain infarction. Stroke 22, 1254–1258.

    Article  PubMed  CAS  Google Scholar 

  6. Ingebrigtsen, T., and Romner, B. (2002) Biochemical serum markers of traumatic brain injury. J. Trauma 52, 798–808.

    Article  PubMed  CAS  Google Scholar 

  7. Pineda, J.A., Wang, K.K., and Hayes, R.L. (2004) Biomarkers of proteolytic damage following traumatic brain injury. Brain Pathol. 14, 202–209.

    Article  PubMed  CAS  Google Scholar 

  8. Siman, R., McIntosh, T.K., Soltesz, K.M., Chen, Z., Neumar, R.W., and Roberts, V.L. (2004) Proteins released from degenerating neurons are surrogate markers for acute brain damage. Neurobiol. Dis. 16, 311–320.

    Article  PubMed  CAS  Google Scholar 

  9. Berger, R.P. (2006) The use of serum biomarkers to predict outcome after traumatic brain injury in adults and children. J. Head Trauma Rehabil. 21, 315–333.

    Article  PubMed  Google Scholar 

  10. Sotgiu, S., Zanda, B., Marchetti, B., Fois, M.L., Arru, G., Pes, G.M., Salaris, F.S., Arru, A., Pirisi, A., and Rosati, G. (2006) Inflammatory biomarkers in blood of patients with acute brain ischemia. Eur. J. Neurol. 13, 505–513.

    Article  PubMed  CAS  Google Scholar 

  11. Shigeno, T., Teasdale, G.M., McCulloch, J., and Graham, D.I. (1985) Recirculation model following MCA occlusion in rats. Cerebral blood flow, cerebrovascular permeability, and brain edema. J. Neurosurg. 63, 272–277.

    Article  PubMed  CAS  Google Scholar 

  12. Buchan, A., Slivka, A., and Xue, D. (1992) The effect of the NMDA receptor antagonist MK-801 on cerebral blood flow and infarct volume in experimental focal stroke. Brain Res. 574, 171–177.

    Article  PubMed  CAS  Google Scholar 

  13. Papadopoulos, S.M., Chandler, W.F., Salamat, M.S., Topol, E.J., and Sackellares, J.C. (1987) Recombinant human tissue-type plasminogen activator therapy in acute thromboembolic stroke. J. Neurosurg. 67, 394–398.

    Article  PubMed  CAS  Google Scholar 

  14. Busch, E., Kruger, K., and Hossmann, K.A. (1997) Improved model of thromboembolic stroke and rt-PA induced reperfusion in the rat. Brain Res. 778, 16–24.

    Article  PubMed  CAS  Google Scholar 

  15. Takano, K., Carano, R.A., Tatlisumak, T., Meiler, M., Sotak, C.H., Kleinert, H.D., and Fisher, M. (1998) Efficacy of intra-arterial and intravenous prourokinase in an embolic stroke model evaluated by diffusion-perfusion magnetic resonance imaging. Neurology 50, 870–875.

    Article  PubMed  CAS  Google Scholar 

  16. Koizumi, J., Yoshida, Y., Nakazawa, T., and Ooneda, G. (1986) Experimental studies of ischemic brain edema: 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Japan Stroke Journal 8, 1–8.

    Article  Google Scholar 

  17. Longa, E., Weinstein, P., Carlson, S., and Cummins, R. (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20, 84–91.

    Article  PubMed  CAS  Google Scholar 

  18. Phillips, J., Williams, A., Adams, J., Elliott, P., and Tortella, F. (2000) Proteasome inhibitor PS519 reduces infarction and attenuates leukocyte infiltration in a rat model of focal cerebral ischemia. Stroke 31, 1686–1693.

    Article  PubMed  CAS  Google Scholar 

  19. Williams, A., Dave, J., Phillips, J., Lin, Y., McCabe, R., and Tortella, F. (2000) Neuroprotective efficacy and therapeutic window of the high-affinity N-methyl-d-aspartate antagonist conantokin-G: in vitro (primary cerebellar neurons) and in vivo (rat model of transient focal brain ischemia) studies. J. Pharmacol. Exp. Ther. 294, 378–386.

    PubMed  CAS  Google Scholar 

  20. Berti, R., Williams, A., Moffett, J., Hale, S., Velarde, L., Elliott, P., Yao, C., Dave, J., and Tortella, F. (2002) Real time PCR mRNA analysis of the inflammatory cascade associated with ischemia reperfusion brain injury. J. Cereb. Blood Flow Metab. 22, 1068–1079.

    Article  PubMed  CAS  Google Scholar 

  21. Williams, A., Ling, G., McCabe, R., and Tortella, F. (2002) Intrathecal CGX-1007 is neuroprotective in a rat model of focal cerebral ischemia. Neuroreport 13, 821–824.

    Article  PubMed  CAS  Google Scholar 

  22. Williams, A., and Tortella, F. (2002) Neuroprotective effects of the sodium channel blocker RS100642 and attenuation of ischemia-induced brain seizures in the rat. Brain Res. 932, 45–55.

    Article  PubMed  CAS  Google Scholar 

  23. Yao, C., Williams, A., Cui, P., Berti, R., Hunter, J., Tortella, F., and Dave, J. (2002) Differential pattern of expression of voltage-gated sodium channel genes following ischemic brain injury in rats. Neurotox. Res. 4, 67–75.

    Article  PubMed  CAS  Google Scholar 

  24. Williams, A.J., Ling, G., Berti, R., Moffett, J.R., Yao, C., Lu, X.M., Dave, J.R., and Tortella, F.C. (2003) Treatment with the snail peptide CGX-1007 reduces DNA damage and alters gene expression of c-fos and bcl-2 following focal ischemic brain injury in rats. Exp. Brain Res. 153, 16–26.

    Article  PubMed  CAS  Google Scholar 

  25. Lu, X.C., Williams, A.J., Yao, C., Berti, R., Hartings, J.A., Whipple, R., Vahey, M.T., Polavarapu, R.G., Woller, K.L., Tortella, F.C., and Dave, J.R. (2004) Microarray analysis of acute and delayed gene expression profile in rats after focal ischemic brain injury and reperfusion. J. Neurosci. Res. 77, 843–857.

    Article  PubMed  CAS  Google Scholar 

  26. Williams, A.J., Berti, R., Dave, J.R., Elliot, P.J., Adams, J., and Tortella, F.C. (2004) Delayed treatment of ischemia/reperfusion brain injury: extended therapeutic window with the proteosome inhibitor MLN519. Stroke 35, 1186–1191.

    Article  PubMed  CAS  Google Scholar 

  27. Lu, X.C., Williams, A.J., Wagstaff, J.D., Tortella, F.C., and Hartings, J.A. (2005) Effects of delayed intrathecal infusion of an NMDA receptor antagonist on ischemic injury and peri-infarct depolarizations. Brain Res. 1056, 200–208.

    Article  PubMed  CAS  Google Scholar 

  28. Williams, A.J., Myers, T.M., Cohn, S.I., Sharrow, K.M., Lu, X.C., and Tortella, F.C. (2005) Recovery from ischemic brain injury in the rat following a 10 h delayed injection with MLN519. Pharmacol. Biochem. Behav. 81, 182–189.

    Article  PubMed  CAS  Google Scholar 

  29. Yao, C., Williams, A.J., Lu, X.C., Hartings, J.A., Yu, Z.Y., Berti, R., Du, F., Tortella, F.C., and Dave, J.R. (2005) Down-regulation of sodium channel Nav1.1 a-subunit mRNA and protein following ischemic brain injury. Life Science 77, 1116–1129.

    Article  CAS  Google Scholar 

  30. Williams, A.J., Dave, J.R., and Tortella, F.C. (2006) Neuroprotection with the proteasome inhibitor MLN519 in focal ischemic brain injury: relation to nuclear factor kappaB (NF-kappaB), inflammatory gene expression, and leukocyte infiltration. Neurochem. Int. 49, 106–112.

    Article  PubMed  CAS  Google Scholar 

  31. Kohno, K., Back, T., Hoehn-Berlage, M., and Hossmann, K.A. (1995) A modified rat model of middle cerebral artery thread occlusion under electrophysiological control for magnetic resonance investigations. Magn. Reson. Imaging 13, 65–71.

    Article  PubMed  CAS  Google Scholar 

  32. Kuge, Y., Minematsu, K., Yamaguchi, T., and Miyake, Y. (1995) Nylon monofilament for intraluminal middle cerebral artery occlusion in rats. Stroke 26, 1655–1657; discussion 1658.

    Article  PubMed  CAS  Google Scholar 

  33. Li, F., Han, S., Tatlisumak, T., Carano, R.A., Irie, K., Sotak, C.H., and Fisher, M. (1998) A new method to improve in-bore middle cerebral artery occlusion in rats: demonstration with diffusion- and perfusion-weighted imaging. Stroke 29, 1715–1719; discussion 1719–1720.

    Article  PubMed  CAS  Google Scholar 

  34. Aspey, B.S., Taylor, F.L., Terruli, M., and Harrison, M.J. (2000) Temporary middle cerebral artery occlusion in the rat: consistent protocol for a model of stroke and reperfusion. Neuropathol. Appl. Neurobiol. 26, 232–242.

    Article  PubMed  CAS  Google Scholar 

  35. Waynforth, H., and Flecknell, P. (1992) Experimental and surgical technique in the rat. Academic, London.

    Google Scholar 

  36. Schmid-Elsaesser, R., Zausinger, S., Hungerhuber, E., Baethmann, A., and Reulen, H.J. (1998) A critical reevaluation of the intraluminal thread model of focal cerebral ischemia: evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler flowmetry. Stroke 29, 2162–2170.

    Article  PubMed  CAS  Google Scholar 

  37. Lu, X., Williams, A., and Tortella, F. (2001) Quantitative electroencephalography spectral analysis and topographic mapping in a rat model of middle cerebral artery occlusion. Neuropathol. Appl. Neurobiol. 27, 481–495.

    Article  PubMed  CAS  Google Scholar 

  38. Bederson, J., Pitts, L., Tsuji, M., Nishimura, M., Davis, R., and Bartkowski, H. (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17, 472–476.

    Article  PubMed  CAS  Google Scholar 

  39. Bederson, J., Pitts, L., Germano, S., Nishimura, M., Davis, R., and Bartkowski, H. (1986) Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke 17, 1304–1308.

    Article  PubMed  CAS  Google Scholar 

  40. Park, C., Mendelow, A., Graham, D., McCulloch, J., and Teasdale, G. (1988) Correlation of triphenyltetrazolium chloride perfusion staining with conventional neurohistology in the detection of early brain ischaemia. Neuropathol. Appl. Neurobiol. 14, 289–298.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research was conducted in compliance with the Animal Welfare Act and other Federal statutes and regulations relating to animals and experiments involving animals and adheres to the principles stated in the Guide for the Care and Use of Laboratory Animals, NIH publication 85–23. Material has been reviewed by the Walter Reed Army Institute of Research. There is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the authors, and are not to be construed as official, or as reflecting true views of the Department of the Army or the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra R. Dave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dave, J.R., Williams, A.J., Yao, C., Lu, XC.M., Tortella, F.C. (2009). Modeling Cerebral Ischemia in Neuroproteomics. In: Ottens, A., Wang, K. (eds) Neuroproteomics. Methods in Molecular Biology, vol 566. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-562-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-562-6_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-84-8

  • Online ISBN: 978-1-59745-562-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics