Designing Plasmid Vectors

  • Oleg TolmachovEmail author
Part of the Methods in Molecular Biology™ book series (MIMB, volume 542)


Nonviral gene therapy vectors are commonly based on recombinant bacterial plasmids or their derivatives. The plasmids are propagated in bacteria, so, in addition to their therapeutic cargo, they necessarily contain a bacterial replication origin and a selection marker, usually a gene conferring antibiotic resistance. Structural and maintenance plasmid stability in bacteria is required for the plasmid DNA production and can be achieved by carefully choosing a combination of the therapeutic DNA sequences, replication origin, selection marker, and bacterial strain. The use of appropriate promoters, other regulatory elements, and mammalian maintenance devices ensures that the therapeutic gene or genes are adequately expressed in target human cells. Optimal immune response to the plasmid vectors can be modulated via inclusion or exclusion of DNA sequences containing immunostimulatory CpG sequence motifs.

DNA fragments facilitating construction of plasmid vectors should also be considered for inclusion in the design of plasmid vectors. Techniques relying on site-specific or homologous recombination are preferred for construction of large plasmids (>15 kb), while digestion of DNA by restriction enzymes with subsequent ligation of the resulting DNA fragments continues to be the mainstream approach for generation of small- and medium-size plasmids. Rapid selection of a desired recombinant plasmid against a background of other plasmids continues to be a challenge. In this chapter, the emphasis is placed on efficient and flexible versions of DNA cloning protocols using selection of recombinant plasmids by restriction endonucleases directly in the ligation mixture.


Longevity of gene expression modulation of immune response in cancer gene therapy plasmid manipulation plasmid stability restriction endonuclease digestion of ligation mixture transgene expression 


  1. 1.
    Bolivar, F., Rodriguez, R. L., Betlach, M. C., and Boyer, H. W. (1977) Construction and characterization of new cloning vehicles. I. Ampicillin-resistant derivatives of the plasmid pMB9. Gene. 2, 75–93.PubMedCrossRefGoogle Scholar
  2. 2.
    Bolivar, F., Rodriguez, R. L., Greene, P. J., Betlach, M. C., Heyneker, H. L., and Boyer, H. W. (1977) Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 2, 95–113.PubMedCrossRefGoogle Scholar
  3. 3.
    Vieira, J., and Messing, J. (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 19, 259–268.PubMedCrossRefGoogle Scholar
  4. 4.
    Chistoserdov, A. Y., and Tsygankov, Y. D. (1986) Broad host range vectors derived from an RSF1010::Tn1 plasmid. Plasmid. 16, 161–167.PubMedCrossRefGoogle Scholar
  5. 5.
    Sarovich, D. S., and Pemberton, J. M. (2007) pPSX: a novel vector for the cloning and heterologous expression of antitumor antibiotic gene clusters. Plasmid. 57, 306–313.PubMedCrossRefGoogle Scholar
  6. 6.
    Wu, F., Levchenko, I., and Filutowicz, M. (1995) A DNA segment conferring stable maintenance on R6K gamma-origin core replicons. J. Bacteriol. 177, 6338–6345.PubMedGoogle Scholar
  7. 7.
    Seed, B. (1983) Purification of genomic sequences from bacteriophage libraries by recombination and selection in vivo. Nucleic Acids Res. 11, 2427–2445.PubMedCrossRefGoogle Scholar
  8. 8.
    Kingsman, S. M., Mitrophanous, K., and Olsen, J. C. (2005) Potential oncogene activity of the woodchuck hepatitis post-transcriptional regulatory element (WPRE). Gene Ther. 12, 3–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Storni, T., Ruedl, C., Schwarz, K., Schwendener, R. A., Renner, W. A., and Bachmann, M. F. (2004) Nonmethylated CG motifs packaged into virus-like particles induce protective cytotoxic T cell responses in the absence of systemic side effects. J. Immunol. 172, 1777–1785.PubMedGoogle Scholar
  10. 10.
    Yew, N. S., Zhao, H., Przybylska, M., Wu, I. H., Tousignant, J. D., Scheule, R. K., et al. (2002) CpG-depleted plasmid DNA vectors with enhanced safety and long-term gene expression in vivo. Mol. Ther. 5, 731–738.PubMedCrossRefGoogle Scholar
  11. 11.
    Bigger, B. W., Tolmachov, O., Collombet, J. M., Fragkos, M., Palaszewski, I., and Coutelle, C. (2001) An araC-controlled bacterial cre expression system to produce DNA minicircle vectors for nuclear and mitochondrial gene therapy. J. Biol. Chem. 276, 23018–23027.PubMedCrossRefGoogle Scholar
  12. 12.
    Vaysse, L., Gregory, L. G., Harbottle, R. P., Perouzel, E., Tolmachov, O., and Coutelle, C. (2006) Nuclear-targeted minicircle to enhance gene transfer with non-viral vectors in vitro and in vivo. J. Gene Med. 8, 754–763.PubMedCrossRefGoogle Scholar
  13. 13.
    Tolmachov, O., and Coutelle, C. (2007) Covalent attachment of multifunctional chimeric terminal proteins to 5' DNA ends: a potential new strategy for assembly of synthetic therapeutic gene vectors. Med. Hypotheses. 68, 328–331.PubMedCrossRefGoogle Scholar
  14. 14.
    Lufino, M. M., Manservigi, R., and Wade-Martins, R. (2007) An S/MAR-based infectious episomal genomic DNA expression vector provides long-term regulated functional complementation of LDLR deficiency. Nucleic Acids Res. 35, e98.PubMedCrossRefGoogle Scholar
  15. 15.
    Calos, M. P. (2006) The phiC31 integrase system for gene therapy. Curr. Gene Ther. 6, 633–645.PubMedCrossRefGoogle Scholar
  16. 16.
    Tolmachov, O., Palaszewski, I., Bigger, B., and Coutelle, C. (2006) RecET driven chromosomal gene targeting to generate a RecA deficient Escherichia coli strain for Cre mediated production of minicircle DNA. BMC Biotechnol. 6, 17.PubMedCrossRefGoogle Scholar
  17. 17.
    Gu, W., Putral, L., Hengst, K., Minto, K., Saunders, N. A., Leggatt, G., et al. (2006) Inhibition of cervical cancer cell growth in vitro and in vivo with lentiviral-vector delivered short hairpin RNA targeting human papillomavirus E6 and E7 oncogenes. Cancer Gene Ther. 13, 1023–1032.PubMedCrossRefGoogle Scholar
  18. 18.
    Chaffin, D. O., and Rubens, C. E. (1998) Blue/white screening of recombinant plasmids in Gram-positive bacteria by interruption of alkaline phosphatase gene (phoZ) expression. Gene. 219, 91–99.PubMedCrossRefGoogle Scholar
  19. 19.
    Bernard, P. (1996) Positive selection of recombinant DNA by CcdB. Biotechniques. 21, 320–323.PubMedGoogle Scholar
  20. 20.
    Choi, Y. J., Wang, T. T., and Lee, B. H. (2002) Positive selection vectors. Crit. Rev. Biotechnol. 22, 225–244.PubMedCrossRefGoogle Scholar
  21. 21.
    Gabant, P., Van Reeth, T., Dreze, P. L., Faelen, M., Szpirer, C., and Szpirer, J. (2000) New positive selection system based on the parD (kis/kid) system of the R1 plasmid. Biotechniques. 28, 784–788.PubMedGoogle Scholar
  22. 22.
    Heyman, J. A., Cornthwaite, J., Foncerrada, L., Gilmore, J. R., Gontang, E., Hartman, K. J., et al. (1999) Genome-scale cloning and expression of individual open reading frames using topoisomerase I-mediated ligation. Genome Res. 9, 383–392.PubMedGoogle Scholar
  23. 23.
    Al-Allaf, F. A., Tolmachov, O., Themis, M., and Coutelle, C. (2005) Coupled analysis of bacterial transformants and ligation mixture by duplex PCR enables detection of fatal instability of a nascent recombinant plasmid. J. Biochem. Biophys. Methods. 64, 142–146.PubMedCrossRefGoogle Scholar
  24. 24.
    Fromme, T., and Klingenspor, M. (2007) Rapid single step subcloning procedure by combined action of type II and type IIs endonucleases with ligase. J Biol Eng. 1, 7.PubMedCrossRefGoogle Scholar
  25. 25.
    Gupta, S., Arora, K., Sampath, A., Khurana, S., Singh, S. S., Gupta, A., et al. (1999) Simplified gene-fragment phage display system for epitope mapping. Biotechniques. 27, 328–330, 332–324.PubMedGoogle Scholar
  26. 26.
    Worthington, M. T., Pelo, J., and Lo, R. Q. (2001) Cloning of random oligonucleotides to create single-insert plasmid libraries. Anal. Biochem. 294, 169–175.PubMedCrossRefGoogle Scholar
  27. 27.
    Cosloy, S. D., and Oishi, M. (1973) Genetic transformation in Escherichia coli K12. Proc. Natl. Acad. Sci. USA. 70, 84–87.PubMedCrossRefGoogle Scholar
  28. 28.
    Sawitzke, J. A., Thomason, L. C., Costantino, N., Bubunenko, M., Datta, S., and Court, D. L. (2007) Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond. Methods Enzymol. 421, 171–199.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Molecular Medicine, National Heart and Lung Institute, Faculty of MedicineImperial College LondonLondonUK

Personalised recommendations