Advertisement

Transposable Elements as Plasmid-Based Vectors for Long-Term Gene Transfer into Tumors

  • John R. OhlfestEmail author
  • Zoltán Ivics
  • Zsuzsanna Izsvák
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 542)

Summary

A primary limitation to using nonviral vectors for cancer gene therapy is transient expression of the therapeutic gene. Even when the ultimate goal is tumor cell death, a minimum threshold of gene expression is required to kill tumor cells by direct or indirect mechanisms. It has been shown that transposable elements can significantly enhance the duration of gene expression when plasmid DNA vectors are used to transfect tumor or tumor-associated stroma. Much like a retrovirus, transposon-based plasmid vectors achieve integration into the genome, and thereby sustain transgene expression, which is especially important in actively mitotic cells such as tumor cells. Herein we briefly discuss the different transposons available for gene therapy applications, and provide a detailed protocol for nonviral transposon-based gene delivery to solid experimental tumors in mice.

Keywords

Antiangiogenic cancer gene therapy convection-enhanced delivery (CED) glioma glioblastoma immunotherapy interferon nonviral vectors polyethylenimine (PEI) Sleeping Beauty transposon 

References

  1. 1.
    Lundstrom, K. (2003) Latest development in viral vectors for gene therapy. Trends Biotechnol 21, 117–22.PubMedCrossRefGoogle Scholar
  2. 2.
    Pathak, V.K. and H.M. Temin (1990) Broad spectrum of in vivo forward mutations, hypermutations, and mutational hotspots in a retroviral shuttle vector after a single replication cycle: substitutions, frameshifts, and hypermutations. Proc Natl Acad Sci USA 87, 6019–23.PubMedCrossRefGoogle Scholar
  3. 3.
    Schroder, A.R., P. Shinn, H. Chen, C. Berry, J.R. Ecker, and F. Bushman (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110, 521–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Bushman, F.D. (2003) Targeting survival: integration site selection by retroviruses and LTR-retrotransposons. Cell 115, 135–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Hacein-Bey-Abina, S., C. Von Kalle, M. Schmidt, et al. (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Izsvak, Z. and Z. Ivics (2004) Sleeping beauty transposition: biology and applications for molecular therapy. Mol Ther 9, 147–56.PubMedCrossRefGoogle Scholar
  7. 7.
    Ivics, Z. and Z. Izsvak (2006) Transposons for gene therapy! Curr Gene Ther 6, 593–607.PubMedCrossRefGoogle Scholar
  8. 8.
    Ivics, Z., P.B. Hackett, R.H. Plasterk, and Z. Izsvak (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–10.PubMedCrossRefGoogle Scholar
  9. 9.
    Miskey, C., Z. Izsvak, R.H. Plasterk, and Z. Ivics (2003) The Frog Prince: a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells. Nucleic Acids Res 31, 6873–81.PubMedCrossRefGoogle Scholar
  10. 10.
    Wilson, M.H., C.J. Coates, and A.L. George, Jr. (2007) PiggyBac transposon-mediated gene transfer in human cells. Mol Ther 15, 139–45.PubMedCrossRefGoogle Scholar
  11. 11.
    Balciunas, D., K.J. Wangensteen, A. Wilber, et al. (2006) Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. PLoS Genet 2, e169.PubMedCrossRefGoogle Scholar
  12. 12.
    Calos, M.P. (2006) The phiC31 integrase system for gene therapy. Curr Gene Ther 6, 633–45.PubMedCrossRefGoogle Scholar
  13. 13.
    Mikkelsen, J.G., S.R. Yant, L. Meuse, Z. Huang, H. Xu, and M.A. Kay (2003) Helper-independent Sleeping Beauty transposon-transposase vectors for efficient nonviral gene delivery and persistent gene expression in vivo. Mol Ther 8, 654–65.PubMedCrossRefGoogle Scholar
  14. 14.
    Yant, S.R., L. Meuse, W. Chiu, Z. Ivics, Z. Izsvak, and M.A. Kay (2000) Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat Genet 25, 35–41.PubMedCrossRefGoogle Scholar
  15. 15.
    Ortiz-Urda, S., B. Thyagarajan, D.R. Keene, Q. Lin, M. Fang, M.P. Calos, and P.A. Khavari (2002) Stable nonviral genetic correction of inherited human skin disease. Nat Med 8, 1166–70.PubMedCrossRefGoogle Scholar
  16. 16.
    Wu, A., S. Oh, K. Ericson, et al. (2007) Transposon-based interferon gamma gene transfer overcomes limitations of episomal plasmid for immunogene therapy of glioblastoma. Cancer Gene Ther 14, 550–60.PubMedCrossRefGoogle Scholar
  17. 17.
    Ohlfest, J.R., P.D. Lobitz, S.G. Perkinson, and D.A. Largaespada (2004) Integration and long-term expression in xenografted human glioblastoma cells using a plasmid-based transposon system. Mol Ther 10, 260–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Wu, S.C., Y.J. Meir, C.J. Coates, A.M. Handler, P. Pelczar, S. Moisyadi, and J.M. Kaminski (2006) piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci USA 103, 15008–13.PubMedCrossRefGoogle Scholar
  19. 19.
    Liu, J., I. Jeppesen, K. Nielsen, and T.G. Jensen (2006) Phi c31 integrase induces chromosomal aberrations in primary human fibroblasts. Gene Ther 13, 1188–90.PubMedCrossRefGoogle Scholar
  20. 20.
    Ehrhardt, A., J.A. Engler, H. Xu, A.M. Cherry, and M.A. Kay (2006) Molecular analysis of chromosomal rearrangements in mammalian cells after phiC31-mediated integration. Hum Gene Ther 17, 1077–94.PubMedCrossRefGoogle Scholar
  21. 21.
    Vigdal, T.J., C.D. Kaufman, Z. Izsvak, D.F. Voytas, and Z. Ivics (2002) Common physical properties of DNA affecting target site selection of sleeping beauty and other Tc1/mariner transposable elements. J Mol Biol 323, 441–52.PubMedCrossRefGoogle Scholar
  22. 22.
    Yant, S.R., X. Wu, Y. Huang, B. Garrison, S.M. Burgess, and M.A. Kay (2005) High-resolution genome-wide mapping of transposon integration in mammals. Mol Cell Biol 25, 2085–94.PubMedCrossRefGoogle Scholar
  23. 23.
    Walisko, O., A. Schorn, F. Rolfs, A. Devaraj, C. Miskey, Z. Izsvak, and Z. Ivics (2008) Transcriptional activities of the Sleeping Beauty transposon and shielding its genetic cargo with insulators. Mol Ther 16, 359–69.PubMedCrossRefGoogle Scholar
  24. 24.
    Yant, S.R., Y. Huang, B. Akache, and M.A. Kay (2007) Site-directed transposon integration in human cells. Nucleic Acids Res 35, e50.PubMedCrossRefGoogle Scholar
  25. 25.
    Ivics, Z., A. Katzer, E.E. Stuwe, D. Fiedler, S. Knespel, and Z. Izsvak (2007) Targeted Sleeping Beauty transposition in human cells. Mol Ther 15, 1137–44.PubMedGoogle Scholar
  26. 26.
    Maragathavally, K.J., J.M. Kaminski, and C.J. Coates (2006) Chimeric Mos1 and piggyBac transposases result in site-directed integration. FASEB J 20, 1880–2.PubMedCrossRefGoogle Scholar
  27. 27.
    Laha, T., A. Loukas, S. Wattanasatitarpa, et al. (2007) The bandit, a new DNA transposon from a hookworm-possible horizontal genetic transfer between host and parasite. PLoS Negl Trop Dis 1, e35.PubMedCrossRefGoogle Scholar
  28. 28.
    Lander, E.S., L.M. Linton, B. Birren, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.PubMedCrossRefGoogle Scholar
  29. 29.
    Ohlfest, J.R., A.B. Freese, and D.A. Largaespada (2005) Nonviral vectors for cancer gene therapy: prospects for integrating vectors and combination therapies. Curr Gene Ther 5, 629–41.PubMedCrossRefGoogle Scholar
  30. 30.
    Ohlfest, J.R., Z.L. Demorest, Y. Motooka, et al. (2005) Combinatorial antiangiogenic gene therapy by nonviral gene transfer using the sleeping beauty transposon causes tumor regression and improves survival in mice bearing intracranial human glioblastoma. Mol Ther 12, 778–88.PubMedCrossRefGoogle Scholar
  31. 31.
    Oh, S., G.E. Pluhar, E.A. McNeil, et al. (2007) Efficacy of nonviral gene transfer in the canine brain. J Neurosurg 107, 136–44.PubMedCrossRefGoogle Scholar
  32. 32.
    Ohana, P., P. Schachter, B. Ayesh, et al. (2005) Regulatory sequences of H19 and IGF2 genes in DNA-based therapy of colorectal rat liver metastases. J Gene Med 7, 366–74.PubMedCrossRefGoogle Scholar
  33. 33.
    Yant, S.R., A. Ehrhardt, J.G. Mikkelsen, L. Meuse, T. Pham, and M.A. Kay (2002) Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo. Nat Biotechnol 20, 999–1005.PubMedCrossRefGoogle Scholar
  34. 34.
    Bowers, W.J., M.A. Mastrangelo, D.F. Howard, H.A. Southerland, K.A. Maguire-Zeiss, and H.J. Federoff (2006) Neuronal precursor-restricted transduction via in utero CNS gene delivery of a novel bipartite HSV amplicon/transposase hybrid vector. Mol Ther 13, 580–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Raghavan, R., M.L. Brady, M.I. Rodriguez-Ponce, A. Hartlep, C. Pedain, and J.H. Sampson (2006) Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg Focus 20, E12.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • John R. Ohlfest
    • 1
    • 2
    • 3
    • 4
    Email author
  • Zoltán Ivics
    • 5
  • Zsuzsanna Izsvák
    • 5
    • 6
  1. 1.Department of NeurosurgeryUniversity of Minnesota Medical SchoolMinneapolis
  2. 2.Department of PediatricsUniversity of Minnesota Medical SchoolMinneapolis
  3. 3.Cancer CenterUniversity of Minnesota Medical SchoolMinneapolis
  4. 4.Stem Cell InstituteUniversity of Minnesota Medical SchoolMinneapolis
  5. 5.Max-Delbrück Center for Molecular MedicineGermany
  6. 6.Institute of BiochemistryBiological Research Center of the Hungarian Academy of SciencesSzegedHungary

Personalised recommendations