Use of Minicircle Plasmids for Gene Therapy

  • Peter Mayrhofer
  • Martin Schleef
  • Wolfgang JechlingerEmail author
Part of the Methods in Molecular Biology™ book series (MIMB, volume 542)


A large number of cancer gene therapy clinical trials are currently being performed that are attempting to evaluate novel approaches to eliminate tumor cells by the introduction of genetic material into patients. One of the most important objectives in gene therapy is the development of highly safe and efficient vector systems for gene transfer in eukaryotic cells. Currently, viral and nonviral vector systems are used, both having their advantages and limitations. Minicircles are novel supercoiled minimal expression cassettes, derived from conventional plasmid DNA by site-specific recombination in vivo in Escherichia coli for the use in nonviral gene therapy and vaccination. Minicircle DNA lacks the bacterial backbone sequence consisting of an antibiotic resistance gene, an origin of replication, and inflammatory sequences intrinsic to bacterial DNA. In addition to their improved safety profile, minicircles have been shown to greatly increase the efficiency of transgene expression in various in vitro and in vivo studies. In this chapter, we describe the production, purification, and application of minicircle DNA and discuss the rationale of the improved gene transfer efficiencies compared to conventional plasmid DNA.


Bacterial backbone sequences biosafety minicircle DNA nonviral gene therapy persistent transgene expression plasmid site-specific recombination 


  1. 1.
    Li, Y. Y., Wang, R., Zhang, G. L., Zheng, Y. J., Zhu, P., Zhang, Z. M., Fang, X. X., and Feng, Y. (2007) An archaeal histone-like protein mediates efficient p53 gene transfer and facilitates its anti-cancer effect in vitro and in vivo. Cancer Gene Ther 14, 968–75.PubMedCrossRefGoogle Scholar
  2. 2.
    Reed, J. C. (2002) Apoptosis-based therapies. Nat Rev Drug Discov 1, 111–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Shojaei, F., and Ferrara, N. (2007) Antiangiogenic therapy for cancer: an update. Cancer J 13, 345–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Benimetskaya, L., Lai, J. C., Khvorova, A., Wu, S., Miller, P., and Stein, C. A. (2005) Induction of apoptosis by G3139 in melanoma cells. Ann N Y Acad Sci 1058, 235–45.PubMedCrossRefGoogle Scholar
  5. 5.
    Orlandi, F., Venanzi, F. M., Concetti, A., Yamauchi, H., Tiwari, S., Norton, L., Wolchok, J. D., Houghton, A. N., and Gregor, P. D. (2007) Antibody and CD8 + T cell responses against HER2/neu required for tumor eradication after DNA immunization with a Flt-3 ligand fusion vaccine. Clin Cancer Res 13, 6195–203.PubMedCrossRefGoogle Scholar
  6. 6.
    Finn, O. J. (2003) Cancer vaccines: between the idea and the reality. Nat Rev Immunol 3, 630–41.PubMedCrossRefGoogle Scholar
  7. 7.
    Yu, M., and Finn, O. J. (2006) DNA vaccines for cancer too. Cancer Immunol Immunother 55, 119–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Gasparic, M., Rubio, I., Thones, N., Gissmann, L., and Muller, M. (2007) Prophylactic DNA immunization against multiple papillomavirus types. Vaccine 25, 4540–53.PubMedCrossRefGoogle Scholar
  9. 9.
    Edelstein, M. L., Abedi, M. R., and Wixon, J. (2007) Gene therapy clinical trials worldwide to 2007 – an update. J Gene Med 9, 833–42.PubMedCrossRefGoogle Scholar
  10. 10.
    Raper, S. E., Chirmule, N., Lee, F. S., Wivel, N. A., Bagg, A., Gao, G. P., Wilson, J. M., and Batshaw, M. L. (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80, 148–58.PubMedCrossRefGoogle Scholar
  11. 11.
    Couzin, J., and Kaiser, J. (2005) Gene therapy. As Gelsinger case ends, gene therapy suffers another blow. Science 307, 1028.PubMedCrossRefGoogle Scholar
  12. 12.
    Hacein-Bey-Abina, S., von Kalle, C., Schmidt, M., Le Deist, F., Wulffraat, N., McIntyre, E., Radford, I., Villeval, J. L., Fraser, C. C., Cavazzana-Calvo, M., and Fischer, A. (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348, 255–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Edelstein, M. L., Abedi, M. R., Wixon, J., and Edelstein, R. M. (2004) Gene therapy clinical trials worldwide 1989–2004-an overview. J Gene Med 6, 597–602.PubMedCrossRefGoogle Scholar
  14. 14.
    Ferreira, G. N., Prazeres, D. M., Cabral, J. M., and Schleef, M. (2001) Plasmid manufacturing – an overview. In Plasmids for Therapy and Vaccination (Schleef, M., ed.), pp. 193–236, Wiley-VCH Verlag GmbH KGaA, Weinheim.CrossRefGoogle Scholar
  15. 15.
    Jechlinger, W. (2006) Optimization and delivery of plasmid DNA for vaccination. Expert Rev Vaccines 5, 803–25.PubMedCrossRefGoogle Scholar
  16. 16.
    EMEA (2001) Note for Guidance on the Quality, Preclinical and Clinical Aspects of Gene Transfer Medicinal Products. CPMP/BWP/3088/99.Google Scholar
  17. 17.
    FDA (1996) Points to consider on plasmid DNA vaccines for preventive infectious disease indications. Docket No. 96N-0400.Google Scholar
  18. 18.
    FDA (1998) Guidance for human somatic cell therapy and gene therapy.Google Scholar
  19. 19.
    Pang, A. S. (1994) Production of antibodies against Bacillus thuringiensis delta-endotoxin by injecting its plasmids. Biochem Biophys Res Commun 202, 1227–34.PubMedCrossRefGoogle Scholar
  20. 20.
    Hartikka, J., Sawdey, M., Cornefert-Jensen, F., Margalith, M., Barnhart, K., Nolasco, M., Vahlsing, H. L., Meek, J., Marquet, M., Hobart, P., Norman, J., and Manthorpe, M. (1996) An improved plasmid DNA expression vector for direct injection into skeletal muscle. Hum Gene Ther 7, 1205–17.PubMedCrossRefGoogle Scholar
  21. 21.
    Valera, A., Perales, J. C., Hatzoglou, M., and Bosch, F. (1994) Expression of the neomycin-resistance (neo) gene induces alterations in gene expression and metabolism. Hum Gene Ther 5, 449–56.PubMedCrossRefGoogle Scholar
  22. 22.
    Chen, Z. Y., He, C. Y., Meuse, L., and Kay, M. A. (2004) Silencing of episomal transgene expression by plasmid bacterial DNA elements in vivo. Gene Ther 11, 856–64.PubMedCrossRefGoogle Scholar
  23. 23.
    Klinman, D. M. (2004) Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 4, 249–58.PubMedCrossRefGoogle Scholar
  24. 24.
    Krieg, A. M., Yi, A. K., Matson, S., Waldschmidt, T. J., Bishop, G. A., Teasdale, R., Koretzky, G. A., and Klinman, D. M. (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., and Akira, S. (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Rankin, R., Pontarollo, R., Ioannou, X., Krieg, A. M., Hecker, R., Babiuk, L. A., and van Drunen Littel-van den Hurk, S. (2001) CpG motif identification for veterinary and laboratory species demonstrates that sequence recognition is highly conserved. Antisense Nucleic Acid Drug Dev 11, 333–40.PubMedCrossRefGoogle Scholar
  27. 27.
    Bigger, B. W., Tolmachov, O., Collombet, J. M., Fragkos, M., Palaszewski, I., and Coutelle, C. (2001) An araC-controlled bacterial cre expression system to produce DNA minicircle vectors for nuclear and mitochondrial gene therapy. J Biol Chem 276, 23018–27.PubMedCrossRefGoogle Scholar
  28. 28.
    Chen, Z. Y., He, C. Y., Ehrhardt, A., and Kay, M. A. (2003) Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther 8, 495–500.PubMedCrossRefGoogle Scholar
  29. 29.
    Darquet, A. M., Cameron, B., Wils, P., Scherman, D., and Crouzet, J. (1997) A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Ther 4, 1341–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Jechlinger, W., Azimpour Tabrizi, C., Lubitz, W., and Mayrhofer, P. (2004) Minicircle DNA immobilized in bacterial ghosts: in vivo production of safe non-viral DNA delivery vehicles. J Mol Microbiol Biotechnol 8, 222–31.PubMedCrossRefGoogle Scholar
  31. 31.
    Nehlsen, K., Broll, S., and Bode, J. (2006) Replicating minicircles: generation of nonviral episomes for the efficient modification of dividing cells. Gene Therapy and Molecular Biology 10, 233–44.Google Scholar
  32. 32.
    Sadowski, P. (1986) Site-specific recombinases: changing partners and doing the twist. J Bacteriol 165, 341–7.PubMedGoogle Scholar
  33. 33.
    Gilbertson, L. (2003) Cre-lox recombination: creative tools for plant biotechnology. Trends Biotechnol 21, 550–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Kreiss, P., Cameron, B., Darquet, A. M., Scherman, D., and Crouzet, J. (1998) Production of a new DNA vehicle for gene transfer using site-specific recombination. Appl Microbiol Biotechnol 49, 560–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Thorpe, H. M., and Smith, M. C. (1998) In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci USA 95, 5505–10.PubMedCrossRefGoogle Scholar
  36. 36.
    Thorpe, H. M., Wilson, S. E., and Smith, M. C. (2000) Control of directionality in the site-specific recombination system of the Streptomyces phage phiC31. Mol Microbiol 38, 232–41.PubMedCrossRefGoogle Scholar
  37. 37.
    Eberl, L., Kristensen, C. S., Givskov, M., Grohmann, E., Gerlitz, M., and Schwab, H. (1994) Analysis of the multimer resolution system encoded by the parCBA operon of broad-host-range plasmid RP4. Mol Microbiol 12, 131–41.PubMedCrossRefGoogle Scholar
  38. 38.
    Smith, M. C., and Thorpe, H. M. (2002) Diversity in the serine recombinases. Mol Microbiol 44, 299–307.PubMedCrossRefGoogle Scholar
  39. 39.
    Thomson, J. G., and Ow, D. W. (2006) Site-specific recombination systems for the genetic manipulation of eukaryotic genomes. Genesis 44, 465–76.PubMedCrossRefGoogle Scholar
  40. 40.
    Darquet, A. M., Rangara, R., Kreiss, P., Schwartz, B., Naimi, S., Delaere, P., Crouzet, J., and Scherman, D. (1999) Minicircle: an improved DNA molecule for in vitro and in vivo gene transfer. Gene Ther 6, 209–18.PubMedCrossRefGoogle Scholar
  41. 41.
    Kreiss, P., Cameron, B., Rangara, R., Mailhe, P., Aguerre-Charriol, O., Airiau, M., Scherman, D., Crouzet, J., and Pitard, B. (1999) Plasmid DNA size does not affect the physicochemical properties of lipoplexes but modulates gene transfer efficiency. Nucleic Acids Res 27, 3792–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Mayrhofer, P. , Blaesen, M., Schleef,M., and Jechlinger,W. (2008) J Gene Med 10, 1253–69.PubMedCrossRefGoogle Scholar
  43. 43.
    Chen, Z. Y., He, C. Y., and Kay, M. A. (2005) Improved production and purification of minicircle DNA vector free of plasmid bacterial sequences and capable of persistent transgene expression in vivo. Hum Gene Ther 16, 126–31.PubMedCrossRefGoogle Scholar
  44. 44.
    Wils, P., Escriou, V., Warnery, A., Lacroix, F., Lagneaux, D., Ollivier, M., Crouzet, J., Mayaux, J. F., and Scherman, D. (1997) Efficient purification of plasmid DNA for gene transfer using triple-helix affinity chromatography. Gene Ther 4, 323–30.PubMedCrossRefGoogle Scholar
  45. 45.
    Forde, G. M., Ghose, S., Slater, N. K., Hine, A. V., Darby, R. A., and Hitchcock, A. G. (2006) LacO-lacI interaction in affinity adsorption of plasmid DNA. Biotechnol Bioeng 95(1), 67–75.PubMedCrossRefGoogle Scholar
  46. 46.
    Ghose, S., Forde, G. M., and Slater, N. K. (2004) Affinity adsorption of plasmid DNA. Biotechnol Prog 20, 841–50.PubMedCrossRefGoogle Scholar
  47. 47.
    Mayrhofer, P., Azimpour Tabrizi, C., Walcher, P., Haidinger, W., Jechlinger, W., and Lubitz, W. (2005) Immobilization of plasmid DNA in bacterial ghosts. J Control Rel 102, 725–35.CrossRefGoogle Scholar
  48. 48.
    Wu, J., Xiao, X., Zhao, P., Xue, G., Zhu, Y., Zhu, X., Zheng, L., Zeng, Y., and Huang, W. (2006) Minicircle-IFNgamma induces antiproliferative and antitumoral effects in human nasopharyngeal carcinoma. Clin Cancer Res 12, 4702–13.PubMedCrossRefGoogle Scholar
  49. 49.
    Park, J. H., Lee, M., and Kim, S. W. (2006) Non-viral adiponectin gene therapy into obese type 2 diabetic mice ameliorates insulin resistance. J Control Rel 114, 118–25.CrossRefGoogle Scholar
  50. 50.
    Xia, H. B., Chen, Z. Y., and Chen, X. G. (2006) Overexpression of hepatitis B virus-binding protein, squamous cell carcinoma antigen 1, extends retention of hepatitis B virus in mouse liver. Acta Biochim Biophys Sin (Shanghai) 38, 484–91.CrossRefGoogle Scholar
  51. 51.
    Vaysse, L., Gregory, L. G., Harbottle, R. P., Perouzel, E., Tolmachov, O., and Coutelle, C. (2006) Nuclear-targeted minicircle to enhance gene transfer with non-viral vectors in vitro and in vivo. J Gene Med 8, 754–63.PubMedCrossRefGoogle Scholar
  52. 52.
    Yin, W., Xiang, P., and Li, Q. (2005) Investigations of the effect of DNA size in transient transfection assay using dual luciferase system. Anal Biochem 346, 289–94.PubMedCrossRefGoogle Scholar
  53. 53.
    Buttrick, P. M., Kass, A., Kitsis, R. N., Kaplan, M. L., and Leinwand, L. A. (1992) Behavior of genes directly injected into the rat heart in vivo. Circ Res 70, 193–8.PubMedGoogle Scholar
  54. 54.
    Remaut, K., Sanders, N. N., Fayazpour, F., Demeester, J., and De Smedt, S. C. (2006) Influence of plasmid DNA topology on the transfection properties of DOTAP/DOPE lipoplexes. J Control Rel 115, 335–43.CrossRefGoogle Scholar
  55. 55.
    Schwartz, D. A., Quinn, T. J., Thorne, P. S., Sayeed, S., Yi, A. K., and Krieg, A. M. (1997) CpG motifs in bacterial DNA cause inflammation in the lower respiratory tract. J Clin Invest 100, 68–73.PubMedCrossRefGoogle Scholar
  56. 56.
    Yew, N. S., Wang, K. X., Przybylska, M., Bagley, R. G., Stedman, M., Marshall, J., Scheule, R. K., and Cheng, S. H. (1999) Contribution of plasmid DNA to inflammation in the lung after administration of cationic lipid:pDNA complexes. Hum Gene Ther 10, 223–34.PubMedCrossRefGoogle Scholar
  57. 57.
    Freimark, B. D., Blezinger, H. P., Florack, V. J., Nordstrom, J. L., Long, S. D., Deshpande, D. S., Nochumson, S., and Petrak, K. L. (1998) Cationic lipids enhance cytokine and cell influx levels in the lung following administration of plasmid: cationic lipid complexes. J Immunol 160, 4580–6.PubMedGoogle Scholar
  58. 58.
    Tan, Y., Li, S., Pitt, B. R., and Huang, L. (1999) The inhibitory role of CpG immunostimulatory motifs in cationic lipid vector-mediated transgene expression in vivo. Hum Gene Ther 10, 2153–61.PubMedCrossRefGoogle Scholar
  59. 59.
    Riu, E., Chen, Z. Y., Xu, H., He, C. Y., and Kay, M. A. (2007) Histone modifications are associated with the persistence or silencing of vector-mediated transgene expression in vivo. Mol Ther 15, 1348–55.PubMedCrossRefGoogle Scholar
  60. 60.
    Suzuki, M., Kasai, K., and Saeki, Y. (2006) Plasmid DNA sequences present in conventional herpes simplex virus amplicon vectors cause rapid transgene silencing by forming inactive chromatin. J Virol 80, 3293–300.PubMedCrossRefGoogle Scholar
  61. 61.
    Qin, L., Ding, Y., Pahud, D. R., Chang, E., Imperiale, M. J., and Bromberg, J. S. (1997) Promoter attenuation in gene therapy: interferon-gamma and tumor necrosis factor-alpha inhibit transgene expression. Hum Gene Ther 8, 2019–29.PubMedCrossRefGoogle Scholar
  62. 62.
    Paillard, F. (1999) CpG: the double-edged sword. Hum Gene Ther 10, 2089–90.PubMedCrossRefGoogle Scholar
  63. 63.
    Sexton, T., Schober, H., Fraser, P., and Gasser, S. M. (2007) Gene regulation through nuclear organization. Nat Struct Mol Biol 14, 1049–55.PubMedCrossRefGoogle Scholar
  64. 64.
    Yan, C., and Boyd, D. D. (2006) Histone H3 acetylation and H3 K4 methylation define distinct chromatin regions permissive for transgene expression. Mol Cell Biol 26, 6357–71.PubMedCrossRefGoogle Scholar
  65. 65.
    Navarre, W. W., Porwollik, S., Wang, Y., McClelland, M., Rosen, H., Libby, S. J., and Fang, F. C. (2006) Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 313, 236–8.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Peter Mayrhofer
    • 1
  • Martin Schleef
    • 2
  • Wolfgang Jechlinger
    • 1
    • 3
    Email author
  1. 1.Mayrhofer & Jechlinger OEGViennaAustria
  2. 2.PlasmidFactory GmbH & Co. KGBielefeldGermany
  3. 3.Institute of Bacteriology, Mycology and Hygiene, Department of PathobiologyUniversity of Veterinary Medicine ViennaViennaAustria

Personalised recommendations