Advertisement

Chemoprotection by Transfer of Resistance Genes

  • Tulin Budak-Alpdogan
  • Joseph R. BertinoEmail author
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 542)

Summary

Dose-limiting toxicity of chemotherapeutic agents, i.e., myelosuppression, can limit their effectiveness. The transfer and expression of drug-resistance genes might decrease the risks associated with acute hematopoietic toxicity. Protection of hematopoietic stem/progenitor cells by transfer of drug-resistance genes provides the possibility of intensification or escalation of antitumor drug doses and consequently an improved therapeutic index. This chapter reviews drug-resistance gene transfer strategies for either myeloprotection or therapeutic gene selection. Selecting candidate drug-resistance gene(s), gene transfer methodology, evaluating the safety and the efficiency of the treatment strategy, relevant in vivo models, and oncoretroviral transduction of human hematopoietic stem/progenitor cells under clinically applicable conditions are described.

Key Words

CD34+ cells drug-resistance gene hematopoietic stem cells murine models myeloprotection retroviral gene transfer transduction 

References

  1. 1.
    Bertino JR. “Turning the tables”—making normal marrow resistant to chemotherapy. J Natl Cancer Inst 1990;82(15):1234–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Persons DA, Allay ER, Sawai N,. Successful treatment of murine beta-thalassemia using in vivo selection of genetically modified, drug-resistant hematopoietic stem cells. Blood 2003;102(2):506–13.PubMedCrossRefGoogle Scholar
  3. 3.
    Havenga MJ, Werner AB, Valerio D, van Es HH. Methotrexate selectable retroviral vectors for Gaucher disease. Gene Ther 1998;5(10):1379–88.PubMedCrossRefGoogle Scholar
  4. 4.
    Carella AM, Congiu AM, Gaozza E,. High-dose chemotherapy with autologous bone marrow transplantation in 50 advanced resistant Hodgkin's disease patients: an Italian study group report. J Clin Oncol 1988;6(9):1411–6.PubMedGoogle Scholar
  5. 5.
    Kollmannsberger C, Mayer F, Kuczyk M, Kanz L, Bokemeyer C. Treatment of patients with metastatic germ cell tumors relapsing after high-dose chemotherapy. World J Urol 2001;19(2):120–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Vuento MH, Salmi TA, Remes KJ, Grenman SE. Hematological toxicity of salvage treatment after high-dose chemotherapy and conventional chemotherapy of ovarian cancer. Anticancer Res 2002;22(2B):1151–5.PubMedGoogle Scholar
  7. 7.
    Rapoport AP, Guo C, Badros A,. Autologous stem cell transplantation followed by consolidation chemotherapy for relapsed or refractory Hodgkin's lymphoma. Bone Marrow Transplant 2004;34(10):883–90.PubMedCrossRefGoogle Scholar
  8. 8.
    Rapoport AP, Meisenberg B, Sarkodee-Adoo C,. Autotransplantation for advanced lymphoma and Hodgkin's disease followed by post-transplant rituxan/GM-CSF or radiotherapy and consolidation chemotherapy. Bone Marrow Transplant 2002;29(4):303–12.PubMedCrossRefGoogle Scholar
  9. 9.
    Hesdorffer C, Ayello J, Ward M,. Phase I trial of retroviral-mediated transfer of the human MDR1 gene as marrow chemoprotection in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation. J Clin Oncol 1998;16(1):165–72.PubMedGoogle Scholar
  10. 10.
    Eckert HG, Kuhlcke K, Schilz AJ,. Clinical scale production of an improved retroviral vector expressing the human multidrug resistance 1 gene (MDR1). Bone Marrow Trans 2000;25(Suppl 2):S114–7.CrossRefGoogle Scholar
  11. 11.
    Moscow JA, Huang H, Carter C,. Engraftment of MDR1 and NeoR gene-transduced hematopoietic cells after breast cancer chemotherapy. Blood 1999;94(1):52–61.PubMedGoogle Scholar
  12. 12.
    Sorrentino BP, Brandt SJ, Bodine D,. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science 1992;257(5066):99–103.PubMedCrossRefGoogle Scholar
  13. 13.
    Schilz AJ, Schiedlmeier B, Kuhlcke K,. MDR1 gene expression in NOD/SCID repopulating cells after retroviral gene transfer under clinically relevant conditions. Mol Ther 2000;2(6):609–18.PubMedCrossRefGoogle Scholar
  14. 14.
    Sugimoto Y, Sato S, Tsukahara S,. Coexpression of a multidrug resistance gene (MDR1) and herpes simplex virus thymidine kinase gene in a bicistronic retroviral vector Ha-MDR-IRES-TK allows selective killing of MDR1-transduced human tumors transplanted in nude mice. Cancer Gene Ther 1997;4(1):51–8.PubMedGoogle Scholar
  15. 15.
    Licht T, Goldenberg SK, Vieira WD, Gottesman MM, Pastan I. Drug selection of MDR1-transduced hematopoietic cells ex vivo increases transgene expression and chemoresistance in reconstituted bone marrow in mice. Gene Ther 2000;7(4):348–58.PubMedCrossRefGoogle Scholar
  16. 16.
    Cowan KH, Moscow JA, Huang H,. Paclitaxel chemotherapy after autologous stem-cell transplantation and engraftment of hematopoietic cells transduced with a retrovirus containing the multidrug resistance complementary DNA (MDR1) in metastatic breast cancer patients. Clin Cancer Res 1999;5(7):1619–28.PubMedGoogle Scholar
  17. 17.
    Abonour R, Williams DA, Einhorn L,. Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells. Nat Med 2000;6(6):652–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Capiaux GM, Budak-Alpdogan T, Takebe N,. Retroviral transduction of a mutant dihydrofolate reductase-thymidylate synthase fusion gene into murine marrow cells confers resistance to both methotrexate and 5-Fluorouracil. Hum Gene Ther 2003;14(5):435–46.PubMedCrossRefGoogle Scholar
  19. 19.
    Sauerbrey A, McPherson JP, Zhao SC, Banerjee D, Bertino JR. Expression of a novel double-mutant dihydrofolate reductase-cytidine deaminase fusion gene confers resistance to both methotrexate and cytosine arabinoside. Hum Gene Ther 1999;10(15):2495–504.PubMedCrossRefGoogle Scholar
  20. 20.
    Mineishi S, Nakahara S, Takebe N, Banerjee D, Zhao SC, Bertino JR. Co-expression of the herpes simplex virus thymidine kinase gene potentiates methotrexate resistance conferred by transfer of a mutated dihydrofolate reductase gene. Gene Ther 1997;4(6):570–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Takebe N, Zhao SC, Adhikari D,. Generation of dual resistance to 4-hydroperoxycyclophosphamide and methotrexate by retroviral transfer of the human aldehyde dehydrogenase class 1 gene and a mutated dihydrofolate reductase gene. Mol Ther 2001;3(1):88–96.PubMedCrossRefGoogle Scholar
  22. 22.
    Beausejour CM, Le NL, Letourneau S, Cournoyer D, Momparler RL. Coexpression of cytidine deaminase and mutant dihydrofolate reductase by a bicistronic retroviral vector confers resistance to cytosine arabinoside and methotrexate. Hum Gene Ther 1998;9(17):2537–44.PubMedCrossRefGoogle Scholar
  23. 23.
    Wang J, Chen Z, Xia X, Lu D, Xue J, Ruan C. A bicistronic retroviral vector to introduce drug resistance genes into human umbilical cord blood CD34+ cells to improve combination chemotherapy tolerance. Chin Med J (Engl) 2001;114(1):25–9.Google Scholar
  24. 24.
    Suzuki M, Sugimoto Y, Tsukahara S, Okochi E, Gottesman MM, Tsuruo T. Retroviral coexpression of two different types of drug resistance genes to protect normal cells from combination chemotherapy. Clin Cancer Res 1997;3(6):947–54.PubMedGoogle Scholar
  25. 25.
    Suzuki M, Sugimoto Y, Tsuruo T. Efficient protection of cells from the genotoxicity of nitrosoureas by the retrovirus-mediated transfer of human O6-methylguanine-DNA methyltransferase using bicistronic vectors with human multidrug resistance gene 1. Mutat Res 1998;401(1–2):133–41.PubMedGoogle Scholar
  26. 26.
    Belzile JP, Karatzas A, Shiu HY, Letourneau S, Palerme JS, Cournoyer D. Increased resistance to nitrogen mustards and antifolates following in vitro selection of murine fibroblasts and primary hematopoietic cells transduced with a bicistronic retroviral vector expressing the rat glutathione S-transferase A3 and a mutant dihydrofolate reductase. Cancer Gene Ther 2003;10(8):637–46.PubMedCrossRefGoogle Scholar
  27. 27.
    Rappa G, Lorico A, Hildinger M, Fodstad O, Baum C. Novel bicistronic retroviral vector expressing gamma-glutamylcysteine synthetase and the multidrug resistance protein 1 (MRP1) protects cells from MRP1-effluxed drugs and alkylating agents. Hum Gene Ther 2001;12(14):1785–96.PubMedCrossRefGoogle Scholar
  28. 28.
    Richard E, Geronimi F, Lalanne M,. A bicistronic SIN-lentiviral vector containing G156A MGMT allows selection and metabolic correction of hematopoietic protoporphyric cell lines. J Gene Med 2003;5(9):737–47.PubMedCrossRefGoogle Scholar
  29. 29.
    Amendola M, Venneri MA, Biffi A, Vigna E, Naldini L. Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 2005;23(1):108–16.PubMedCrossRefGoogle Scholar
  30. 30.
    Fux C, Fussenegger M. Bidirectional expression units enable streptogramin-adjustable gene expression in mammalian cells. Biotechnol Bioeng 2003;83(5):618–25.PubMedCrossRefGoogle Scholar
  31. 31.
    Ray S, Paulmurugan R, Hildebrandt I,. Novel bidirectional vector strategy for amplification of therapeutic and reporter gene expression. Hum Gene Ther 2004;15(7):681–90.PubMedCrossRefGoogle Scholar
  32. 32.
    Weissinger F, Reimer P, Waessa T,. Gene transfer in purified human hematopoietic peripheral-blood stem cells by means of electroporation without prestimulation. J Lab Clin Med 2003;141(2):138–49.PubMedCrossRefGoogle Scholar
  33. 33.
    Wu MH, Liebowitz DN, Smith SL, Williams SF, Dolan ME. Efficient expression of foreign genes in human CD34(+) hematopoietic precursor cells using electroporation. Gene Ther 2001;8(5):384–90.PubMedCrossRefGoogle Scholar
  34. 34.
    Wu MH, Smith SL, Danet GH,. Optimization of culture conditions to enhance transfection of human CD34+ cells by electroporation. Bone Marrow Trans 2001;27(11):1201–9.CrossRefGoogle Scholar
  35. 35.
    Wu MH, Smith SL, Dolan ME. High efficiency electroporation of human umbilical cord blood CD34+ hematopoietic precursor cells. Stem Cells 2001;19(6):492–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Geurts AM, Yang Y, Clark KJ,. Gene transfer into genomes of human cells by the sleeping beauty transposon system. Mol Ther 2003;8(1):108–17.PubMedCrossRefGoogle Scholar
  37. 37.
    Izsvak Z, Ivics Z, Plasterk RH. Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J Mol Biol 2000;302(1):93–102.PubMedCrossRefGoogle Scholar
  38. 38.
    Yant SR, Meuse L, Chiu W, Ivics Z, Izsvak Z, Kay MA. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat Genet 2000;25(1):35–41.PubMedCrossRefGoogle Scholar
  39. 39.
    Mikkelsen JG, Yant SR, Meuse L, Huang Z, Xu H, Kay MA. Helper-Independent Sleeping Beauty transposon-transposase vectors for efficient nonviral gene delivery and persistent gene expression in vivo. Mol Ther 2003;8(4):654–65.PubMedCrossRefGoogle Scholar
  40. 40.
    Liu G, Geurts AM, Yae K,. Target-site preferences of Sleeping Beauty transposons. J Mol Biol 2005;346(1):161–73.PubMedCrossRefGoogle Scholar
  41. 41.
    Huang X, Wilber AC, Bao L,. Stable gene transfer and expression in human primary T cells by the Sleeping Beauty transposon system. Blood 2006;107(2):483–91.PubMedCrossRefGoogle Scholar
  42. 42.
    Fernando S, Fletcher BS. Sleeping beauty transposon-mediated nonviral gene therapy. BioDrugs 2006;20(4):219–29.PubMedCrossRefGoogle Scholar
  43. 43.
    Hollis RP, Nightingale SJ, Wang X,. Stable gene transfer to human CD34(+) hematopoietic cells using the Sleeping Beauty transposon. Exp Hematol 2006;34(10):1333–43.PubMedCrossRefGoogle Scholar
  44. 44.
    Wilson MH, Coates CJ, George AL, Jr. PiggyBac Transposon-mediated Gene Transfer in Human Cells. Mol Ther 2007;15(1):139–45.PubMedCrossRefGoogle Scholar
  45. 45.
    Yant SR, Huang Y, Akache B, Kay MA. Site-directed transposon integration in human cells. Nucleic Acids Res 2007;35(7):e50.PubMedCrossRefGoogle Scholar
  46. 46.
    Wright DA, Thibodeau-Beganny S, Sander JD,. Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc 2006;1(3):1637–52.PubMedCrossRefGoogle Scholar
  47. 47.
    Moehle EA, Rock JM, Lee YL,. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci U S A 2007;104(9):3055–60.PubMedCrossRefGoogle Scholar
  48. 48.
    Hacein-Bey-Abina S, Von Kalle C, Schmidt M,. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003;302(5644):415–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Hacein-Bey-Abina S, von Kalle C, Schmidt M,. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003;348(3):255–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Couzin J, Kaiser J. Gene therapy. As Gelsinger case ends, gene therapy suffers another blow. Science 2005;307(5712):1028.PubMedCrossRefGoogle Scholar
  51. 51.
    Baum C. What are the consequences of the fourth case? Mol Ther 2007;15(8):1401–2.PubMedCrossRefGoogle Scholar
  52. 52.
    Lewinski MK, Bushman FD. Retroviral DNA integration—mechanism and consequences. Adv Genet 2005;55:147–81.PubMedCrossRefGoogle Scholar
  53. 53.
    Lewinski MK, Yamashita M, Emerman M,. Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog 2006;2(6):e60.PubMedCrossRefGoogle Scholar
  54. 54.
    Kustikova O, Fehse B, Modlich U,. Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science 2005;308(5725):1171–4.PubMedCrossRefGoogle Scholar
  55. 55.
    Montini E, Cesana D, Schmidt M,. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 2006;24(6):687–96.PubMedCrossRefGoogle Scholar
  56. 56.
    Deichmann A, Hacein-Bey-Abina S, Schmidt M,. Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy. J Clin Invest 2007;117(8):2225–32.PubMedCrossRefGoogle Scholar
  57. 57.
    Cattoglio C, Facchini G, Sartori D,. Hot spots of retroviral integration in human CD34+ hematopoietic cells. Blood 2007;110(6):1770–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Beard BC, Dickerson D, Beebe K,. Comparison of HIV-derived lentiviral and MLV-based gammaretroviral vector integration sites in primate repopulating cells. Mol Ther 2007;15(7):1356–65.PubMedCrossRefGoogle Scholar
  59. 59.
    Bushman FD. Retroviral integration and human gene therapy. J Clin Invest 2007;117(8):2083–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Trobridge GD, Miller DG, Jacobs MA,. Foamy virus vector integration sites in normal human cells. Proc Natl Acad Sci U S A 2006;103(5):1498–503.PubMedCrossRefGoogle Scholar
  61. 61.
    Baum C, Kustikova O, Modlich U, Li Z, Fehse B. Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther 2006;17(3):253–63.PubMedCrossRefGoogle Scholar
  62. 62.
    Modlich U, Kustikova OS, Schmidt M,. Leukemias following retroviral transfer of multidrug resistance 1 (MDR1) are driven by combinatorial insertional mutagenesis. Blood 2005;105(11):4235–46.PubMedCrossRefGoogle Scholar
  63. 63.
    Dave UP, Jenkins NA, Copeland NG. Gene therapy insertional mutagenesis insights. Science 2004;303(5656):333.PubMedCrossRefGoogle Scholar
  64. 64.
    Kustikova OS, Geiger H, Li Z,. Retroviral vector insertion sites associated with dominant hematopoietic clones mark “stemness” pathways. Blood 2007;109(5):1897–907.PubMedCrossRefGoogle Scholar
  65. 65.
    Hargrove PW, Kepes S, Hanawa H,. Globin lentiviral vector insertions can perturb the expression of endogenous genes in beta-thalassemic hematopoietic cells. Mol Ther 2008;16(3):525–33.PubMedCrossRefGoogle Scholar
  66. 66.
    Seggewiss R, Pittaluga S, Adler RL,. Acute myeloid leukemia is associated with retroviral gene transfer to hematopoietic progenitor cells in a rhesus macaque. Blood 2006;107(10):3865–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Baum C. Insertional mutagenesis in gene therapy and stem cell biology. Curr Opin Hematol 2007;14(4):337–42.PubMedCrossRefGoogle Scholar
  68. 68.
    Siapati EK, Bigger BW, Kashofer K, Themis M, Thrasher AJ, Bonnet D. Murine leukemia following irradiation conditioning for transplantation of lentivirally-modified hematopoietic stem cells. Eur J Haematol 2007;78(4):303–13.PubMedCrossRefGoogle Scholar
  69. 69.
    Li Z, Dullmann J, Schiedlmeier B,. Murine leukemia induced by retroviral gene marking. Science 2002;296(5567):497.PubMedCrossRefGoogle Scholar
  70. 70.
    Wu X, Li Y, Crise B, Burgess SM. Transcription start regions in the human genome are favored targets for MLV integration. Science 2003;300(5626):1749–51.PubMedCrossRefGoogle Scholar
  71. 71.
    Mitchell RS, Beitzel BF, Schroder AR,. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2004;2(8):E234.PubMedCrossRefGoogle Scholar
  72. 72.
    Schmidt M, Hoffmann G, Wissler M,. Detection and direct genomic sequencing of multiple rare unknown flanking DNA in highly complex samples. Hum Gene Ther 2001;12(7):743–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Hematti P, Hong BK, Ferguson C,. Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells. PLoS Biol 2004;2(12):e423.PubMedCrossRefGoogle Scholar
  74. 74.
    Will E, Bailey J, Schuesler T,. Importance of murine study design for testing toxicity of retroviral vectors in support of phase I trials. Mol Ther 2007;15(4):782–91.PubMedGoogle Scholar
  75. 75.
    Schmidt M, Schwarzwaelder K, Bartholomae C,. High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR). Nat Methods 2007;4(12):1051–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Ott MG, Schmidt M, Schwarzwaelder K,. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006;12(4):401–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Schmidt M, Carbonaro DA, Speckmann C,. Clonality analysis after retroviral-mediated gene transfer to CD34+ cells from the cord blood of ADA-deficient SCID neonates. Nat Med 2003;9(4):463–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Kraunus J, Schaumann DH, Meyer J,. Self-inactivating retroviral vectors with improved RNA processing. Gene Ther 2004;11(21):1568–78.PubMedCrossRefGoogle Scholar
  79. 79.
    Modlich U, Bohne J, Schmidt M,. Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood 2006;108(8):2545–53.PubMedCrossRefGoogle Scholar
  80. 80.
    Schambach A, Mueller D, Galla M,. Overcoming promoter competition in packaging cells improves production of self-inactivating retroviral vectors. Gene Ther 2006;13(21):1524–33.PubMedCrossRefGoogle Scholar
  81. 81.
    Schambach A, Bohne J, Chandra S,. Equal potency of gammaretroviral and lentiviral SIN vectors for expression of O6-methylguanine-DNA methyltransferase in hematopoietic cells. Mol Ther 2006;13(2):391–400.PubMedCrossRefGoogle Scholar
  82. 82.
    Schambach A, Galla M, Maetzig T, Loew R, Baum C. Improving transcriptional termination of self-inactivating gamma-retroviral and lentiviral vectors. Mol Ther 2007;15(6):1167–73.PubMedGoogle Scholar
  83. 83.
    Thornhill SI, Schambach A, Howe SJ,. Self-inactivating gammaretroviral vectors for gene therapy of X-linked severe combined immunodeficiency. Mol Ther 2008;16(3):590–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Zychlinski D, Schambach A, Modlich U, et al. Physiological Promoters Reduce the Genotoxic Risk of Integrating Gene Vectors. Mol Ther 2008.Google Scholar
  85. 85.
    Ryu BY, Evans-Galea MV, Gray JT, Bodine DM, Persons DA, Nienhuis AW. An experimental system for the evaluation of retroviral vector design to diminish the risk for proto-oncogene activation. Blood 2008;111(4):1866–75.PubMedCrossRefGoogle Scholar
  86. 86.
    Leurs C, Jansen M, Pollok KE,. Comparison of three retroviral vector systems for transduction of nonobese diabetic/severe combined immunodeficiency mice repopulating human CD34+ cord blood cells. Hum Gene Ther 2003;14(6):509–19.PubMedCrossRefGoogle Scholar
  87. 87.
    Josephson NC, Vassilopoulos G, Trobridge GD,. Transduction of human NOD/SCID-repopulating cells with both lymphoid and myeloid potential by foamy virus vectors. Proc Natl Acad Sci U S A 2002;99(12):8295–300.PubMedCrossRefGoogle Scholar
  88. 88.
    Gatlin J, Padgett A, Melkus MW, Kelly PF, Garcia JV. Long-term engraftment of nonobese diabetic/severe combined immunodeficient mice with human CD34+ cells transduced by a self-inactivating human immunodeficiency virus type 1 vector. Hum Gene Ther 2001;12(9):1079–89.PubMedCrossRefGoogle Scholar
  89. 89.
    Haas DL, Case SS, Crooks GM, Kohn DB. Critical factors influencing stable transduction of human CD34(+) cells with HIV-1-derived lentiviral vectors. Mol Ther 2000;2(1):71–80.PubMedCrossRefGoogle Scholar
  90. 90.
    Karlsson S, Ooka A, Woods NB. Development of gene therapy for blood disorders by gene transfer into haematopoietic stem cells. Haemophilia 2002;8(3):255–60.PubMedCrossRefGoogle Scholar
  91. 91.
    Kimchi-Sarfaty C, Arora M, Sandalon Z, Oppenheim A, Gottesman MM. High cloning capacity of in vitro packaged SV40 vectors with no SV40 virus sequences. Hum Gene Ther 2003;14(2):167–77.PubMedCrossRefGoogle Scholar
  92. 92.
    Kimchi-Sarfaty C, Gottesman MM. SV40 pseudovirions as highly efficient vectors for gene transfer and their potential application in cancer therapy. Curr Pharm Biotechnol 2004;5(5):451–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Kimchi-Sarfaty C, Alexander NS, Brittain S, Ali S, Gottesman MM. Transduction of multiple cell types using improved conditions for gene delivery and expression of SV40 pseudovirions packaged in vitro. Biotechniques 2004;37(2):270–5.PubMedGoogle Scholar
  94. 94.
    Vassilopoulos G, Trobridge G, Josephson NC, Russell DW. Gene transfer into murine hematopoietic stem cells with helper-free foamy virus vectors. Blood 2001;98(3):604–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Russell DW, Miller AD. Foamy virus vectors. J Virol 1996;70(1):217–22.PubMedGoogle Scholar
  96. 96.
    Trobridge G, Vassilopoulos G, Josephson N, Russell DW. Gene transfer with foamy virus vectors. Methods Enzymol 2002;346:628–48.PubMedCrossRefGoogle Scholar
  97. 97.
    Lombardo A, Genovese P, Beausejour CM,. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 2007;25(11):1298–306.PubMedCrossRefGoogle Scholar
  98. 98.
    Brown BD, Gentner B, Cantore A,. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 2007;25(12):1457–67.PubMedCrossRefGoogle Scholar
  99. 99.
    Brown BD, Cantore A, Annoni A,. A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 2007;110(13):4144–52.PubMedCrossRefGoogle Scholar
  100. 100.
    Riviere I, Sadelain, M.W.J. Methods for the construction of etroviral vectors and the generation of high titer producers. In: Robbins P, ed. Methods in Molecular Medicine. Totowa, Humana Press, 1997, pp. 59–78.Google Scholar
  101. 101.
    Berger C, Flowers ME, Warren EH, Riddell SR. Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood 2006;107(6):2294–302.PubMedCrossRefGoogle Scholar
  102. 102.
    Chalmers D, Ferrand C, Apperley JF,. Elimination of the truncated message from the herpes simplex virus thymidine kinase suicide gene. Mol Ther 2001;4(2):146–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Garin MI, Garrett E, Tiberghien P,. Molecular mechanism for ganciclovir resistance in human T lymphocytes transduced with retroviral vectors carrying the herpes simplex virus thymidine kinase gene. Blood 2001;97(1):122–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Sato T, Neschadim A, Konrad M, Fowler DH, Lavie A, Medin JA. Engineered human tmpk/AZT as a novel enzyme/prodrug axis for suicide gene therapy. Mol Ther 2007;15(5):962–70.PubMedCrossRefGoogle Scholar
  105. 105.
    Carbonaro DA, Jin X, Petersen D,. In vivo transduction by intravenous injection of a lentiviral vector expressing human ADA into neonatal ADA gene knockout mice: a novel form of enzyme replacement therapy for ADA deficiency. Mol Ther 2006;13(6):1110–20.PubMedCrossRefGoogle Scholar
  106. 106.
    Alfa RW, Blesch A. Murine and HIV-based retroviral vectors for in vitro and in vivo gene transfer. Methods Mol Med 2006;129:241–54.PubMedGoogle Scholar
  107. 107.
    Worsham DN, Schuesler T, von Kalle C, Pan D. In vivo gene transfer into adult stem cells in unconditioned mice by in situ delivery of a lentiviral vector. Mol Ther 2006;14(4):514–24.PubMedCrossRefGoogle Scholar
  108. 108.
    Aires da Silva F, Costa MJ, Corte-Real S, Goncalves J. Cell type-specific targeting with sindbis pseudotyped lentiviral vectors displaying anti-CCR5 single-chain antibodies. Hum Gene Ther 2005;16(2):223–34.PubMedCrossRefGoogle Scholar
  109. 109.
    Roe T, Reynolds TC, Yu G, Brown PO. Integration of murine leukemia virus DNA depends on mitosis. Embo J 1993;12(5):2099–108.PubMedGoogle Scholar
  110. 110.
    Orlic D, Girard LJ, Anderson SM,. Identification of human and mouse hematopoietic stem cell populations expressing high levels of mRNA encoding retrovirus receptors. Blood 1998;91(9):3247–54.PubMedGoogle Scholar
  111. 111.
    Orlic D, Girard LJ, Jordan CT, Anderson SM, Cline AP, Bodine DM. The level of mRNA encoding the amphotropic retrovirus receptor in mouse and human hematopoietic stem cells is low and correlates with the efficiency of retrovirus transduction. Proc Natl Acad Sci U S A 1996;93(20):11097–102.PubMedCrossRefGoogle Scholar
  112. 112.
    Orlic D, Girard LJ, Anderson SM, Barrette S, Broxmeyer HE, Bodine DM. Amphotropic retrovirus transduction of hematopoietic stem cells. Ann N Y Acad Sci 1999;872:115–23; discussion 23–4.PubMedCrossRefGoogle Scholar
  113. 113.
    Sabatino DE, Do BQ, Pyle LC,. Amphotropic or gibbon ape leukemia virus retrovirus binding and transduction correlates with the level of receptor mRNA in human hematopoietic cell lines. Blood Cells Mol Dis 1997;23(3):422–33.PubMedCrossRefGoogle Scholar
  114. 114.
    Barrette S, Douglas J, Orlic D,. Superior transduction of mouse hematopoietic stem cells with 10A1 and VSV-G pseudotyped retrovirus vectors. Mol Ther 2000;1(4):330–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Zielske SP, Gerson SL. Cytokines, including stem cell factor alone, enhance lentiviral transduction in nondividing human LTCIC and NOD/SCID repopulating cells. Mol Ther 2003;7(3):325–33.PubMedCrossRefGoogle Scholar
  116. 116.
    Mazurier F, Gan OI, McKenzie JL, Doedens M, Dick JE. Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment. Blood 2004;103(2):545–52.PubMedCrossRefGoogle Scholar
  117. 117.
    Tisdale JF, Hanazono Y, Sellers SE,. Ex vivo expansion of genetically marked rhesus peripheral blood progenitor cells results in diminished long-term repopulating ability. Blood 1998;92(4):1131–41.PubMedGoogle Scholar
  118. 118.
    Dorrell C, Gan OI, Pereira DS, Hawley RG, Dick JE. Expansion of human cord blood CD34(+)CD38(-) cells in ex vivo culture during retroviral transduction without a corresponding increase in SCID repopulating cell (SRC) frequency: dissociation of SRC phenotype and function. Blood 2000;95(1):102–10.PubMedGoogle Scholar
  119. 119.
    Gothot A, van der Loo JC, Clapp DW, Srour EF. Cell cycle-related changes in repopulating capacity of human mobilized peripheral blood CD34(+) cells in non-obese diabetic/severe combined immune-deficient mice. Blood 1998;92(8):2641–9.PubMedGoogle Scholar
  120. 120.
    Zielske SP, Gerson SL. Lentiviral transduction of P140K MGMT into human CD34(+) hematopoietic progenitors at low multiplicity of infection confers significant resistance to BG/BCNU and allows selection in vitro. Mol Ther 2002;5(4):381–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Galimi F, Noll M, Kanazawa Y,. Gene therapy of Fanconi anemia: preclinical efficacy using lentiviral vectors. Blood 2002;100(8):2732–6.PubMedCrossRefGoogle Scholar
  122. 122.
    Sandrin V, Boson B, Salmon P,. Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood 2002;100(3):823–32.PubMedCrossRefGoogle Scholar
  123. 123.
    Trobridge G, Russell DW. Cell cycle requirements for transduction by foamy virus vectors compared to those of oncovirus and lentivirus vectors. J Virol 2004;78(5):2327–35.PubMedCrossRefGoogle Scholar
  124. 124.
    Mostoslavsky G, Kotton DN, Fabian AJ, Gray JT, Lee JS, Mulligan RC. Efficiency of transduction of highly purified murine hematopoietic stem cells by lentiviral and oncoretroviral vectors under conditions of minimal in vitro manipulation. Mol Ther 2005;11(6):932–40.PubMedCrossRefGoogle Scholar
  125. 125.
    Budak-Alpdogan T, Przybylowski M, Gonen M, Sadelain M, Bertino J, Riviere I. Functional assessment of the engraftment potential of gammaretrovirus-modified CD34+ cells, using a short serum-free transduction protocol. Hum Gene Ther 2006;17(7):780–94.PubMedCrossRefGoogle Scholar
  126. 126.
    Deola S, Scaramuzza S, Birolo RS,. Mobilized blood CD34+ cells transduced and selected with a clinically applicable protocol reconstitute lymphopoiesis in SCID-Hu mice. Hum Gene Ther 2004;15(3):305–11.PubMedCrossRefGoogle Scholar
  127. 127.
    Moritz T, Dutt P, Xiao X,. Fibronectin improves transduction of reconstituting hematopoietic stem cells by retroviral vectors: evidence of direct viral binding to chymotryptic carboxy-terminal fragments. Blood 1996;88(3):855–62.PubMedGoogle Scholar
  128. 128.
    Hanenberg H, Hashino K, Konishi H, Hock RA, Kato I, Williams DA. Optimization of fibronectin-assisted retroviral gene transfer into human CD34+ hematopoietic cells. Hum Gene Ther 1997;8(18):2193–206.PubMedCrossRefGoogle Scholar
  129. 129.
    Moritz T, Patel VP, Williams DA. Bone marrow extracellular matrix molecules improve gene transfer into human hematopoietic cells via retroviral vectors. J Clin Invest 1994;93(4):1451–7.PubMedCrossRefGoogle Scholar
  130. 130.
    Pollok KE, Williams DA. Facilitation of retrovirus-mediated gene transfer into hematopoietic stem and progenitor cells and peripheral blood T-lymphocytes utilizing recombinant fibronectin fragments. Curr Opin Mol Ther 1999;1(5):595–604.PubMedGoogle Scholar
  131. 131.
    Persons DA, Mehaffey MG, Kaleko M, Nienhuis AW, Vanin EF. An improved method for generating retroviral producer clones for vectors lacking a selectable marker gene. Blood Cells Mol Dis 1998;24(2):167–82.PubMedCrossRefGoogle Scholar
  132. 132.
    Kwon YJ, Peng CA. Transduction rate constant as more reliable index quantifying efficiency of retroviral gene delivery. Biotechnol Bioeng 2002;77(6):668–77.PubMedCrossRefGoogle Scholar
  133. 133.
    Kwon YJ, Hung G, Anderson WF, Peng CA, Yu H. Determination of infectious retrovirus concentration from colony-forming assay with quantitative analysis. J Virol 2003;77(10):5712–20.PubMedCrossRefGoogle Scholar
  134. 134.
    Davis HE, Morgan JR, Yarmush ML. Polybrene increases retrovirus gene transfer efficiency by enhancing receptor-independent virus adsorption on target cell membranes. Biophys Chem 2002;97(2–3):159–72.PubMedCrossRefGoogle Scholar
  135. 135.
    Davis HE, Rosinski M, Morgan JR, Yarmush ML. Charged polymers modulate retrovirus transduction via membrane charge neutralization and virus aggregation. Biophys J 2004;86(2):1234–42.PubMedCrossRefGoogle Scholar
  136. 136.
    Bahnson AB, Dunigan JT, Baysal BE,. Centrifugal enhancement of retroviral mediated gene transfer. J Virol Methods 1995;54(2–3):131–43.PubMedCrossRefGoogle Scholar
  137. 137.
    Kuhlcke K, Fehse B, Schilz A,. Highly efficient retroviral gene transfer based on centrifugation-mediated vector preloading of tissue culture vessels. Mol Ther 2002;5(4):473–8.PubMedCrossRefGoogle Scholar
  138. 138.
    Takiyama N, Mohney T, Swaney W,. Comparison of methods for retroviral mediated transfer of glucocerebrosidase gene to CD34+ hematopoietic progenitor cells. Eur J Haematol 1998;61(1):1–6.PubMedCrossRefGoogle Scholar
  139. 139.
    Sanyal A, Schuening FG. Increased gene transfer into human cord blood cells by centrifugation-enhanced transduction in fibronectin fragment-coated tubes. Hum Gene Ther 1999;10(17):2859–68.PubMedCrossRefGoogle Scholar
  140. 140.
    Movassagh M, Desmyter C, Baillou C,. High-level gene transfer to cord blood progenitors using gibbon ape leukemia virus pseudotype retroviral vectors and an improved clinically applicable protocol. Hum Gene Ther 1998;9(2):225–34.PubMedCrossRefGoogle Scholar
  141. 141.
    Campain JA, Terrell KL, Tomczak JA, Shpall EJ, Hami LS, Harrison GS. Comparison of retroviral-mediated gene transfer into cultured human CD34+ hematopoietic progenitor cells derived from peripheral blood, bone marrow, and fetal umbilical cord blood. Biol Blood Marrow Transplant 1997;3(5):273–81.PubMedGoogle Scholar
  142. 142.
    Relander T, Brun A, Hawley RG, Karlsson S, Richter J. Retroviral transduction of human CD34+ cells on fibronectin fragment CH-296 is inhibited by high concentrations of vector containing medium. J Gene Med 2001;3(3):207–18.PubMedCrossRefGoogle Scholar
  143. 143.
    Murray L, Luens K, Tushinski R,. Optimization of retroviral gene transduction of mobilized primitive hematopoietic progenitors by using thrombopoietin, Flt3, and Kit ligands and RetroNectin culture. Hum Gene Ther 1999;10(11):1743–52.PubMedCrossRefGoogle Scholar
  144. 144.
    Chono H, Yoshioka H, Ueno M, Kato I. Removal of inhibitory substances with recombinant fibronectin-CH-296 plates enhances the retroviral transduction efficiency of CD34(+)CD38(-) bone marrow cells. J Biochem (Tokyo) 2001;130(3):331–4.CrossRefGoogle Scholar
  145. 145.
    Kustikova OS, Wahlers A, Kuhlcke K,. Dose finding with retroviral vectors: correlation of retroviral vector copy numbers in single cells with gene transfer efficiency in a cell population. Blood 2003;102(12):3934–7.PubMedCrossRefGoogle Scholar
  146. 146.
    Murray LJ, Young JC, Osborne LJ, Luens KM, Scollay R, Hill BL. Thrombopoietin, flt3, and kit ligands together suppress apoptosis of human mobilized CD34+ cells and recruit primitive CD34+ Thy-1+ cells into rapid division. Exp Hematol 1999;27(6):1019–28.PubMedCrossRefGoogle Scholar
  147. 147.
    Herrera C, Sanchez J, Torres A, Bellido C, Rueda A, Alvarez MA. Early-acting cytokine-driven ex vivo expansion of mobilized peripheral blood CD34+ cells generates post-mitotic offspring with preserved engraftment ability in non-obese diabetic/severe combined immunodeficient mice. Br J Haematol 2001;114(4):920–30.PubMedCrossRefGoogle Scholar
  148. 148.
    Trarbach T, Greifenberg S, Bardenheuer W,. Optimized retroviral transduction protocol for human progenitor cells utilizing fibronectin fragments. Cytotherapy 2000;2(6):429–38.PubMedCrossRefGoogle Scholar
  149. 149.
    Hennemann B, Conneally E, Pawliuk R,. Optimization of retroviral-mediated gene transfer to human NOD/SCID mouse repopulating cord blood cells through a systematic analysis of protocol variables. Exp Hematol 1999;27(5):817–25.PubMedCrossRefGoogle Scholar
  150. 150.
    van der Loo JC, Liu BL, Goldman AI, Buckley SM, Chrudimsky KS. Optimization of gene transfer into primitive human hematopoietic cells of granulocyte-colony stimulating factor-mobilized peripheral blood using low-dose cytokines and comparison of a gibbon ape leukemia virus versus an RD114-pseudotyped retroviral vector. Hum Gene Ther 2002;13(11):1317–30.PubMedCrossRefGoogle Scholar
  151. 151.
    Relander T, Karlsson S, Richter J. Oncoretroviral gene transfer to NOD/SCID repopulating cells using three different viral envelopes. J Gene Med 2002;4(2):122–32.PubMedCrossRefGoogle Scholar
  152. 152.
    Ott MG, Merget-Millitzer H, Ottmann OG,. Mobilization and transduction of CD34(+) peripheral blood stem cells in patients with X-linked chronic granulomatous disease. J Hematother Stem Cell Res 2002;11(4):683–94.PubMedCrossRefGoogle Scholar
  153. 153.
    Demaison C, Brouns G, Blundell MP,. A defined window for efficient gene marking of severe combined immunodeficient-repopulating cells using a gibbon ape leukemia virus-pseudotyped retroviral vector. Hum Gene Ther 2000;11(1):91–100.PubMedCrossRefGoogle Scholar
  154. 154.
    Gaspar HB, Parsley KL, Howe S,. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 2004;364(9452):2181–7.PubMedCrossRefGoogle Scholar
  155. 155.
    Zhang XB, Beard BC, Trobridge GD,. High incidence of leukemia in large animals after stem cell gene therapy with a HOXB4-expressing retroviral vector. J Clin Invest 2008;118(4):1502–10.PubMedCrossRefGoogle Scholar
  156. 156.
    Neff T, Beard BC, Peterson LJ, Anandakumar P, Thompson J, Kiem HP. Polyclonal chemoprotection against temozolomide in a large animal model of drug resistance gene therapy. Blood 2004.Google Scholar
  157. 157.
    Morris JC, Conerly M, Thomasson B, Storek J, Riddell SR, Kiem HP. Induction of cytotoxic T-lymphocyte responses to enhanced green and yellow fluorescent proteins after myeloablative conditioning. Blood 2004;103(2):492–9.PubMedCrossRefGoogle Scholar
  158. 158.
    Thomasson B, Peterson L, Thompson J, Goerner M, Kiem HP. Direct comparison of steady-state marrow, primed marrow, and mobilized peripheral blood for transduction of hematopoietic stem cells in dogs. Hum Gene Ther 2003;14(17):1683–6.PubMedCrossRefGoogle Scholar
  159. 159.
    Kiem HP, Andrews RG, Morris J,. Improved gene transfer into baboon marrow repopulating cells using recombinant human fibronectin fragment CH-296 in combination with interleukin-6, stem cell factor, FLT-3 ligand, and megakaryocyte growth and development factor. Blood 1998;92(6):1878–86.PubMedGoogle Scholar
  160. 160.
    Kiem HP, Heyward S, Winkler A,. Gene transfer into marrow repopulating cells: comparison between amphotropic and gibbon ape leukemia virus pseudotyped retroviral vectors in a competitive repopulation assay in baboons. Blood 1997;90(11):4638–45.PubMedGoogle Scholar
  161. 161.
    Beard BC, Keyser KA, Trobridge GD,. Unique integration profiles in a canine model of long-term repopulating cells transduced with gammaretrovirus, lentivirus, or foamy virus. Hum Gene Ther 2007;18(5):423–34.PubMedCrossRefGoogle Scholar
  162. 162.
    Stead RB, Kwok WW, Storb R, Miller AD. Canine model for gene therapy: inefficient gene expression in dogs reconstituted with autologous marrow infected with retroviral vectors. Blood 1988;71(3):742–7.PubMedGoogle Scholar
  163. 163.
    Kiem HP, Sellers S, Thomasson B,. Long-term clinical and molecular follow-up of large animals receiving retrovirally transduced stem and progenitor cells: no progression to clonal hematopoiesis or leukemia. Mol Ther 2004;9(3):389–95.PubMedCrossRefGoogle Scholar
  164. 164.
    Wu T, Kim HJ, Sellers SE,. Prolonged high-level detection of retrovirally marked hematopoietic cells in nonhuman primates after transduction of CD34+ progenitors using clinically feasible methods. Mol Ther 2000;1(3):285–93.PubMedCrossRefGoogle Scholar
  165. 165.
    Hanazono Y, Nagashima T, Takatoku M,. In vivo selective expansion of gene-modified hematopoietic cells in a nonhuman primate model. Gene Ther 2002;9(16):1055–64.PubMedCrossRefGoogle Scholar
  166. 166.
    Bodine DM, McDonagh KT, Seidel NE, Nienhuis AW. Survival and retrovirus infection of murine hematopoietic stem cells in vitro: effects of 5-FU and method of infection. Exp Hematol 1991;19(3):206–12.PubMedGoogle Scholar
  167. 167.
    Sato T, Laver JH, Ogawa M. Reversible expression of CD34 by murine hematopoietic stem cells. Blood 1999;94(8):2548–54.PubMedGoogle Scholar
  168. 168.
    James RI, Warlick CA, Diers MD, Gunther R, McIvor RS. Mild preconditioning and low-level engraftment confer methotrexate resistance in mice transplanted with marrow expressing drug-resistant dihydrofolate reductase activity. Blood 2000;96(4):1334–41.PubMedGoogle Scholar
  169. 169.
    Kramer BA, Lemckert FA, Alexander IE, Gunning PW, McCowage GB. Characterisation of a P140K mutant O6-methylguanine-DNA-methyltransferase (MGMT)-expressing transgenic mouse line with drug-selectable bone marrow. J Gene Med 2006;8(9):1071–85.PubMedCrossRefGoogle Scholar
  170. 170.
    Wyss BK, Meyers JL, Sinn AL, Cai S, Pollok KE, Goebel WS. A novel competitive repopulation strategy to quantitate engraftment of ex vivo manipulated murine marrow cells in submyeloablated hosts. Exp Hematol 2008;36(4):513–21.PubMedCrossRefGoogle Scholar
  171. 171.
    Flasshove M, Banerjee D, Mineishi S, Li MX, Bertino JR, Moore MA. Ex vivo expansion and selection of human CD34+ peripheral blood progenitor cells after introduction of a mutated dihydrofolate reductase cDNA via retroviral gene transfer. Blood 1995;85(2):566–74.PubMedGoogle Scholar
  172. 172.
    Piacibello W, Bruno S, Sanavio F,. Lentiviral gene transfer and ex vivo expansion of human primitive stem cells capable of primary, secondary, and tertiary multilineage repopulation in NOD/SCID mice. Nonobese diabetic/severe combined immunodeficient. Blood 2002;100(13):4391–400.PubMedCrossRefGoogle Scholar
  173. 173.
    Muhlebach MD, Schmitt I, Steidl S,. Transduction efficiency of MLV but not of HIV-1 vectors is pseudotype dependent on human primary T lymphocytes. J Mol Med 2003;81(12):801–10.PubMedCrossRefGoogle Scholar
  174. 174.
    Einerhand MP, Bakx TA, Kukler A, Valerio D. Factors affecting the transduction of pluripotent hematopoietic stem cells: long-term expression of a human adenosine deaminase gene in mice. Blood 1993;81(1):254–63.Google Scholar
  175. 175.
    Demarquoy J, Herman GE, Lorenzo I, Trentin J, Beaudet AL, O'Brien WE. Long-term expression of human argininosuccinate synthetase in mice following bone marrow transplantation with retrovirus-transduced hematopoietic stem cells. Hum Gene Ther 1992;3(1):3–10.PubMedCrossRefGoogle Scholar
  176. 176.
    Swift S, Lorens J, Achacoso P, Nolan GP. Rapid production of retroviruses for efficient gene delivery to mammalian cells using 293T cell-based systems. Curr Protoc Immunol 2001;Chapter 10:Unit 10 7C.Google Scholar
  177. 177.
    Rattmann I, Kleff V, Feldmann A,. Reliable generation of stable high titer producer cell lines for gene therapy. Intervirology 2007;50(3):197–203.PubMedCrossRefGoogle Scholar
  178. 178.
    Przybylowski M, Hakakha A, Stefanski J, Hodges J, Sadelain M, Riviere I. Production scale-up and validation of packaging cell clearance of clinical-grade retroviral vector stocks produced in Cell Factories. Gene Ther 2005.Google Scholar
  179. 179.
    Zaiss AK, Muruve DA. Immunity to adeno-associated virus vectors in animals and humans: a continued challenge. Gene Ther 2008;15(11):808–16.PubMedCrossRefGoogle Scholar
  180. 180.
    Follenzi A, Santambrogio L, Annoni A. Immune responses to lentiviral vectors. Curr Gene Ther 2007;7(5):306–15.PubMedCrossRefGoogle Scholar
  181. 181.
    Tuschong L, Soenen SL, Blaese RM, Candotti F, Muul LM. Immune response to fetal calf serum by two adenosine deaminase-deficient patients after T cell gene therapy. Hum Gene Ther 2002;13(13):1605–10.PubMedCrossRefGoogle Scholar
  182. 182.
    Kustikova OS, Baum C, Fehse B. Retroviral integration site analysis in hematopoietic stem cells. Methods Mol Biol 2008;430:255–67.PubMedCrossRefGoogle Scholar
  183. 183.
    Hirose M, Hosoi E, Hamano S, Jalili A. Multidrug resistance in hematological malignancy. J Med Invest 2003;50(3–4):126–35.PubMedGoogle Scholar
  184. 184.
    Leonard GD, Fojo T, Bates SE. The role of ABC transporters in clinical practice. Oncologist 2003;8(5):411–24.PubMedCrossRefGoogle Scholar
  185. 185.
    Robert J. Multidrug resistance in oncology: diagnostic and therapeutic approaches. Eur J Clin Invest 1999;29(6):536–45.PubMedCrossRefGoogle Scholar
  186. 186.
    Budak-Alpdogan T, Alpdogan O, Banerjee D, Wang E, Moore MA, Bertino JR. Methotrexate and cytarabine inhibit progression of human lymphoma in NOD/SCID mice carrying a mutant dihydrofolate reductase and cytidine deaminase fusion gene. Mol Ther 2004;10(3):574–84.PubMedCrossRefGoogle Scholar
  187. 187.
    Zhao SC, Banerjee D, Mineishi S, Bertino JR. Post-transplant methotrexate administration leads to improved curability of mice bearing a mammary tumor transplanted with marrow transduced with a mutant human dihydrofolate reductase cDNA. Hum Gene Ther 1997;8(8):903–9.PubMedCrossRefGoogle Scholar
  188. 188.
    Yahata T, Ando K, Miyatake H,. Competitive repopulation assay of two gene-marked cord blood units in NOD/SCID/gammac(null) mice. Mol Ther 2004;10(5):882–91.PubMedCrossRefGoogle Scholar
  189. 189.
    Ito M, Kobayashi K, Nakahata T. NOD/Shi-scid IL2rgamma(null) (NOG) mice more appropriate for humanized mouse models. Curr Top Microbiol Immunol 2008;324:53–76.PubMedCrossRefGoogle Scholar
  190. 190.
    Ito M, Hiramatsu H, Kobayashi K,. NOD/SCID/gamma©(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 2002;100(9):3175–82.PubMedCrossRefGoogle Scholar
  191. 191.
    Knipper R, Kuehlcke K, Schiedlmeier B,. Improved post-transcriptional processing of an MDR1 retrovirus elevates expression of multidrug resistance in primary human hematopoietic cells. Gene Ther 2001;8(3):239–46.PubMedCrossRefGoogle Scholar
  192. 192.
    Licht T, Aran JM, Goldenberg SK, Vieira WD, Gottesman MM, Pastan I. Retroviral transfer of human MDR1 gene to hematopoietic cells: effects of drug selection and of transcript splicing on expression of encoded P-glycoprotein. Hum Gene Ther 1999;10(13):2173–85.PubMedCrossRefGoogle Scholar
  193. 193.
    Zaboikin MM, Schuening FG. Poor expression of MDR1 transgene in HeLa cells by bicistronic Moloney murine leukemia virus-based vector. Hum Gene Ther 1998;9(15):2263–75.PubMedCrossRefGoogle Scholar
  194. 194.
    Cmejlova J, Hildinger M, Cmejla R,. Impact of splice-site mutations of the human MDR1 cDNA on its stability and expression following retroviral gene transfer. Gene Ther 2003;10(12):1061–5.PubMedCrossRefGoogle Scholar
  195. 195.
    Sorrentino BP, McDonagh KT, Woods D, Orlic D. Expression of retroviral vectors containing the human multidrug resistance 1 cDNA in hematopoietic cells of transplanted mice. Blood 1995;86(2):491–501.PubMedGoogle Scholar
  196. 196.
    Hildinger M, Fehse B, Hegewisch-Becker S,. Dominant selection of hematopoietic progenitor cells with retroviral MDR1 co-expression vectors. Hum Gene Ther 1998;9(1):33–42.PubMedCrossRefGoogle Scholar
  197. 197.
    Bunting KD, Galipeau J, Topham D, Benaim E, Sorrentino BP. Transduction of murine bone marrow cells with an MDR1 vector enables ex vivo stem cell expansion, but these expanded grafts cause a myeloproliferative syndrome in transplanted mice. Blood 1998;92(7):2269–79.PubMedGoogle Scholar
  198. 198.
    Bunting KD, Zhou S, Lu T, Sorrentino BP. Enforced P-glycoprotein pump function in murine bone marrow cells results in expansion of side population stem cells in vitro and repopulating cells in vivo. Blood 2000;96(3):902–9.PubMedGoogle Scholar
  199. 199.
    Devereux S, Corney C, Macdonald C,. Feasibility of multidrug resistance (MDR-1) gene transfer in patients undergoing high-dose therapy and peripheral blood stem cell transplantation for lymphoma. Gene Ther 1998;5(3):403–8.PubMedCrossRefGoogle Scholar
  200. 200.
    Sellers SE, Tisdale JF, Agricola BA,. The effect of multidrug-resistance 1 gene versus neo transduction on ex vivo and in vivo expansion of rhesus macaque hematopoietic repopulating cells. Blood 2001;97(6):1888–91.PubMedCrossRefGoogle Scholar
  201. 201.
    Gerson SL. Clinical relevance of MGMT in the treatment of cancer. J Clin Oncol 2002;20(9):2388–99.PubMedCrossRefGoogle Scholar
  202. 202.
    Wang JS, Sun DJ, Lin GW, Fei J. [A bicistronic retroviral vector containing MGMT and MDR1 drug resistance genes transfer into human umbilical cord blood CD34+ cells to improve combination chemotherapy tolerance]. Shi Yan Sheng Wu Xue Bao 2001;34(3):227–33.PubMedGoogle Scholar
  203. 203.
    Maze R, Carney JP, Kelley MR, Glassner BJ, Williams DA, Samson L. Increasing DNA repair methyltransferase levels via bone marrow stem cell transduction rescues mice from the toxic effects of 1,3-bis(2-chloroethyl)-1-nitrosourea, a chemotherapeutic alkylating agent. Proc Natl Acad Sci U S A 1996;93(1):206–10.PubMedCrossRefGoogle Scholar
  204. 204.
    Koc ON, Reese JS, Davis BM, Liu L, Majczenko KJ, Gerson SL. DeltaMGMT-transduced bone marrow infusion increases tolerance to O6-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea and allows intensive therapy of 1,3-bis(2-chloroethyl)-1-nitrosourea-resistant human colon cancer xenografts. Hum Gene Ther 1999;10(6):1021–30.PubMedCrossRefGoogle Scholar
  205. 205.
    Zielske SP, Reese JS, Lingas KT, Donze JR, Gerson SL. In vivo selection of MGMT(P140K) lentivirus-transduced human NOD/SCID repopulating cells without pretransplant irradiation conditioning. J Clin Invest 2003;112(10):1561–70.PubMedGoogle Scholar
  206. 206.
    Zielske SP, Lingas KT, Li Y, Gerson SL. Limited lentiviral transgene expression with increasing copy number in an MGMT selection model: lack of copy number selection by drug treatment. Mol Ther 2004;9(6):923–31.PubMedCrossRefGoogle Scholar
  207. 207.
    Davis BM, Roth JC, Liu L, Xu-Welliver M, Pegg AE, Gerson SL. Characterization of the P140K, PVP(138–140)MLK, and G156A O6-methylguanine-DNA methyltransferase mutants: implications for drug resistance gene therapy. Hum Gene Ther 1999;10(17):2769–78.PubMedCrossRefGoogle Scholar
  208. 208.
    Davis BM, Koc ON, Gerson SL. Limiting numbers of G156A O(6)-methylguanine-DNA methyltransferase-transduced marrow progenitors repopulate nonmyeloablated mice after drug selection. Blood 2000;95(10):3078–84.PubMedGoogle Scholar
  209. 209.
    Davis BM, Reese JS, Koc ON, Lee K, Schupp JE, Gerson SL. Selection for G156A O6-methylguanine DNA methyltransferase gene-transduced hematopoietic progenitors and protection from lethality in mice treated with O6-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res 1997;57(22):5093–9.PubMedGoogle Scholar
  210. 210.
    Davis BM, Reese JS, Lingas K, Gerson SL. Drug selection of mutant methylguanine methyltransferase from different oncoretroviral backbones results in multilineage hematopoietic transgene expression in primary and secondary recipients. J Hematother Stem Cell Res 2003;12(4):375–87.PubMedCrossRefGoogle Scholar
  211. 211.
    Schambach A, Baum C. Vector design for expression of O6-methylguanine-DNA methyltransferase in hematopoietic cells. DNA Repair (Amst) 2007;6(8):1187–96.CrossRefGoogle Scholar
  212. 212.
    Williams DA, Maze R, Kurpad C, Pegg A, Erickson LC. Protection of hematopoietic cells against combined O6-benzylguanine and chloroethylnitrosourea treatment by mutant forms of O6-methylguanine DNA methyltransferase. Bone Marrow Transplant 2000;25(Suppl 2):S105–9.PubMedCrossRefGoogle Scholar
  213. 213.
    Maze R, Kurpad C, Pegg AE, Erickson LC, Williams DA. Retroviral-mediated expression of the P140A, but not P140A/G156A, mutant form of O6-methylguanine DNA methyltransferase protects hematopoietic cells against O6-benzylguanine sensitization to chloroethylnitrosourea treatment. J Pharmacol Exp Ther 1999;290(3):1467–74.PubMedGoogle Scholar
  214. 214.
    Lijinsky W, Kovatch RM, Singer SS. Carcinogenesis in F-344 rats induced by nitrosohydroxyalkyl-chloroethylureas. J Cancer Res Clin Oncol 1986;112(3):221–8.PubMedCrossRefGoogle Scholar
  215. 215.
    Greene MH, Boice JD, Jr., Strike TA. Carmustine as a cause of acute nonlymphocytic leukemia. N Engl J Med 1985;313(9):579.PubMedGoogle Scholar
  216. 216.
    Pizzorno G, Handschumacher RE. Effect of clinically modeled regimens on the growth response and development of resistance in human colon carcinoma cell lines. Biochem Pharmacol 1995;49(4):559–65.PubMedCrossRefGoogle Scholar
  217. 217.
    Sobrero AF, Aschele C, Bertino JR. Fluorouracil in colorectal cancer—a tale of two drugs: implications for biochemical modulation. J Clin Oncol 1997;15(1):368–81.PubMedGoogle Scholar
  218. 218.
    Ardalan B, Cooney DA, Jayaram HN,. Mechanisms of sensitivity and resistance of murine tumors to 5-fluorouracil. Cancer Res 1980;40(5):1431–7.PubMedGoogle Scholar
  219. 219.
    Randall TD, Weissman IL. Phenotypic and functional changes induced at the clonal level in hematopoietic stem cells after 5-fluorouracil treatment. Blood 1997;89(10):3596–606.PubMedGoogle Scholar
  220. 220.
    Klug CA, Cheshier S, Weissman IL. Inactivation of a GFP retrovirus occurs at multiple levels in long-term repopulating stem cells and their differentiated progeny. Blood 2000;96(3):894–901.PubMedGoogle Scholar
  221. 221.
    Goebel WS, Yoder MC, Pech NK, Dinauer MC. Donor chimerism and stem cell function in a murine congenic transplantation model after low-dose radiation conditioning: effects of a retroviral-mediated gene transfer protocol and implications for gene therapy. Exp Hematol 2002;30(11):1324–32.PubMedCrossRefGoogle Scholar
  222. 222.
    Shultz LD, Lyons BL, Burzenski LM,. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 2005;174(10):6477–89.PubMedGoogle Scholar
  223. 223.
    Pollok KE, van Der Loo JC, Cooper RJ,. Differential transduction efficiency of SCID-repopulating cells derived from umbilical cord blood and granulocyte colony-stimulating factor-mobilized peripheral blood. Hum Gene Ther 2001;12(17):2095–108.PubMedCrossRefGoogle Scholar
  224. 224.
    Abe T, Ito M, Okamoto Y,. Transduction of retrovirus-mediated NeoR gene into CD34+ cells purified from granulocyte colony-stimulating factor (G-CSF)-mobilized infant and cord blood. Exp Hematol 1997;25(9):966–71.PubMedGoogle Scholar
  225. 225.
    Lu L, Xiao M, Clapp DW, Li ZH, Broxmeyer HE. High efficiency retroviral mediated gene transduction into single isolated immature and replatable CD34(3+) hematopoietic stem/progenitor cells from human umbilical cord blood. J Exp Med 1993;178(6):2089–96.PubMedCrossRefGoogle Scholar
  226. 226.
    Veena P, Traycoff CM, Williams DA,. Delayed targeting of cytokine-nonresponsive human bone marrow CD34(+) cells with retrovirus-mediated gene transfer enhances transduction efficiency and long-term expression of transduced genes. Blood 1998;91(10):3693–701.PubMedGoogle Scholar
  227. 227.
    Koizumi K, Nishio M, Endo T,. Large scale purification of human blood CD34+ cells from cryopreserved peripheral blood stem cells, using a nylon-fiber syringe system and immunomagnetic microspheres. Bone Marrow Transplant 2000;26(7):787–93.PubMedCrossRefGoogle Scholar
  228. 228.
    McNiece IK, Stoney GB, Kern BP, Briddell RA. CD34+ cell selection from frozen cord blood products using the Isolex 300i and CliniMACS CD34 selection devices. J Hematother 1998;7(5):457–61.PubMedCrossRefGoogle Scholar
  229. 229.
    Rubinstein P, Dobrila L, Rosenfield RE,. Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci U S A 1995;92(22):10119–22.PubMedCrossRefGoogle Scholar
  230. 230.
    Martinson JA, Loudovaris M, Smith SL,. Ex vivo expansion of frozen/thawed CD34+ cells isolated from frozen human apheresis products. J Hematother 1997;6(1):69–75.PubMedCrossRefGoogle Scholar
  231. 231.
    Christianson SW, Greiner DL, Hesselton RA,. Enhanced human CD4+ T cell engraftment in beta2-microglobulin-deficient NOD-scid mice. J Immunol 1997;158(8):3578–86.PubMedGoogle Scholar
  232. 232.
    Kollet O, Peled A, Byk T,. beta2 microglobulin-deficient (B2m(null)) NOD/SCID mice are excellent recipients for studying human stem cell function. Blood 2000;95(10):3102–5.PubMedGoogle Scholar
  233. 233.
    Hiramatsu H, Nishikomori R, Heike T,. Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gammacnull mice model. Blood 2003;102(3):873–80.PubMedCrossRefGoogle Scholar
  234. 234.
    Piacibello W, Gammaitoni L, Bruno S,. Negative influence of IL3 on the expansion of human cord blood in vivo long-term repopulating stem cells. J Hematother Stem Cell Res 2000;9(6):945–56.PubMedCrossRefGoogle Scholar
  235. 235.
    McGuckin CP, Forraz N, Pettengell R, Thompson A. Thrombopoietin, flt3-ligand and c-kit-ligand modulate HOX gene expression in expanding cord blood CD133 cells. Cell Prolif 2004;37(4):295–306.PubMedCrossRefGoogle Scholar
  236. 236.
    Kurre P, Morris J, Miller AD, Kiem HP. Envelope fusion protein binding studies in an inducible model of retrovirus receptor expression and in CD34(+) cells emphasize limited transduction at low receptor levels. Gene Ther 2001;8(8):593–9.PubMedCrossRefGoogle Scholar
  237. 237.
    Yu SS, Kim JM, Kim S. The 17 nucleotides downstream from the env gene stop codon are important for murine leukemia virus packaging. J Virol 2000;74(18):8775–80.PubMedCrossRefGoogle Scholar
  238. 238.
    Ory DS, Neugeboren BA, Mulligan RC. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc Natl Acad Sci U S A 1996;93(21):11400–6.PubMedCrossRefGoogle Scholar
  239. 239.
    Schnell S, Young JW, Houghton AN, Sadelain M. Retrovirally transduced mouse dendritic cells require CD4+ T cell help to elicit antitumor immunity: implications for the clinical use of dendritic cells. J Immunol 2000;164(3):1243–50.PubMedGoogle Scholar
  240. 240.
    Petzer AL, Hogge DE, Landsdorp PM, Reid DS, Eaves CJ. Self-renewal of primitive human hematopoietic cells (long-term-culture-initiating cells) in vitro and their expansion in defined medium. Proc Natl Acad Sci U S A 1996;93(4):1470–4.PubMedCrossRefGoogle Scholar
  241. 241.
    Seppen J, Kimmel RJ, Osborne WR. Serum-free production, concentration and purification of recombinant retroviruses. Biotechniques 1997;23(5):788–90.PubMedGoogle Scholar
  242. 242.
    Reeves L, Smucker P, Cornetta K. Packaging cell line characteristics and optimizing retroviral vector titer: the National Gene Vector Laboratory experience. Hum Gene Ther 2000;11(15):2093–103.PubMedCrossRefGoogle Scholar
  243. 243.
    Reeves L, Cornetta K. Clinical retroviral vector production: step filtration using clinically approved filters improves titers. Gene Ther 2000;7(23):1993–8.PubMedCrossRefGoogle Scholar
  244. 244.
    Schambach A, Galla M, Modlich U,. Lentiviral vectors pseudotyped with murine ecotropic envelope: increased biosafety and convenience in preclinical research. Exp Hematol 2006;34(5):588–92.PubMedCrossRefGoogle Scholar
  245. 245.
    Schilz AJ, Kuhlcke K, Fauser AA, Eckert HG. Optimization of retroviral vector generation for clinical application. J Gene Med 2001;3(5):427–36.PubMedCrossRefGoogle Scholar
  246. 246.
    Kotani H, Newton PB, 3rd, Zhang S,. Improved methods of retroviral vector transduction and production for gene therapy. Hum Gene Ther 1994;5(1):19–28.PubMedCrossRefGoogle Scholar
  247. 247.
    Carmo M, Faria TQ, Falk H,. Relationship between retroviral vector membrane and vector stability. J Gen Virol 2006;87(Pt 5):1349–56.PubMedCrossRefGoogle Scholar
  248. 248.
    Wikstrom K, Blomberg P, Islam KB. Clinical grade vector production: analysis of yield, stability, and storage of gmp-produced retroviral vectors for gene therapy. Biotechnol Prog 2004;20(4):1198–203.PubMedCrossRefGoogle Scholar
  249. 249.
    Carmo M, Peixoto C, Coroadinha AS, Alves PM, Cruz PE, Carrondo MJ. Quantitation of MLV-based retroviral vectors using real-time RT-PCR. J Virol Methods 2004;119(2):115–9.PubMedCrossRefGoogle Scholar
  250. 250.
    Sanburn N, Cornetta K. Rapid titer determination using quantitative real-time PCR. Gene Ther 1999;6(7):1340–5.PubMedCrossRefGoogle Scholar
  251. 251.
    Scott-Taylor TH, Gallardo HF, Gansbacher B, Sadelain M. Adenovirus facilitated infection of human cells with ecotropic retrovirus. Gene Ther 1998;5(5):621–9.PubMedCrossRefGoogle Scholar
  252. 252.
    Higashikawa F, Chang L. Kinetic analyses of stability of simple and complex retroviral vectors. Virology 2001;280(1):124–31.PubMedCrossRefGoogle Scholar
  253. 253.
    Andreadis ST, Brott D, Fuller AO, Palsson BO. Moloney murine leukemia virus-derived retroviral vectors decay intracellularly with a half-life in the range of 5.5 to 7.5 hours. J Virol 1997;71(10):7541–8.PubMedGoogle Scholar
  254. 254.
    McTaggart S, Al-Rubeai M. Effects of culture parameters on the production of retroviral vectors by a human packaging cell line. Biotechnol Prog 2000;16(5):859–65.PubMedCrossRefGoogle Scholar
  255. 255.
    Quintas-Cardama, A., Yeh, R. K., Hollyman, D., Stefanski, J., Taylor, C., Nikhamin, Y., Imperato, G., Sadelain, M., Riviere, I., and Brentjens, R. J. (2007) Hum Gene Ther 18, 1253–60.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Medicine and Pharmacology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical SchoolUniversity of Medicine and Dentistry of New JerseyNew BrunswickUSA

Personalised recommendations