Use of RNA Aptamers for the Modulation of Cancer Cell Signaling

  • Sunjoo JeongEmail author
  • Hee Kyu Lee
  • Mee Young Kim
Part of the Methods in Molecular Biology™ book series (MIMB, volume 542)


Aptamers are in vitro evolved molecules that bind to target proteins with high affinity and specificity by adapting three-dimensional structures upon binding. Because cancer cells exhibit the activation of signaling pathways that are not usually activated in normal cells, RNA aptamers against such a cancer cell-specific signal can be useful lead molecules for cancer gene therapy. The Wnt/β-catenin signaling pathway plays important roles in a critical initiating event in the formation of various human cancers. Because mutations in β-catenin have been found to be responsible for human tumorigenesis, β-catenin is the molecular target for effective anticancer therapies. Here, we describe the selection of RNA aptamers against β-catenin/transcription factor (TCF) proteins and their intracellular expression as intramers. The RNA aptamers acted as central inhibitory players for multiple oncogenic functions of β-catenin in colon cancer cells. These data provide the proof-of-principle for the use of RNA aptamers for an effective anticancer gene therapy.


Anticancer therapy β-catenin colon cancer RNA aptamer RNA intramer TCF tumorigenesis 



This study was supported by grants from the Korea Research Foundation, the Korea Science and Engineering Foundation, the Korean Ministry of Sciences and Technology, and the Korean Ministry of Health and Welfare.


  1. 1.
    Tuerk, C. and Gold, L. (1990) Systemic evolution of ligands by exponential enrichment: RNA lignads to bacteriophage T4 DNA polymerase. Science 249, 505–510.PubMedCrossRefGoogle Scholar
  2. 2.
    Ellington, A. D. and Szostak, J. W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822.PubMedCrossRefGoogle Scholar
  3. 3.
    Robertson, D. L. and Joyce, G. F. (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nat. Struct. Biol. 344, 467–468.Google Scholar
  4. 4.
    Bunka, D. H. and Stockley, P. G. (2006) Aptamers come of age - at last. Nat. Rev. Microbiol. 4, 588–596.PubMedCrossRefGoogle Scholar
  5. 5.
    Lee, J. F., Stovall, G. M. and Ellington, A. D. (2006) Aptamer therapeutics advance. Curr. Opin. Chem. Biol. 10, 282–289.PubMedCrossRefGoogle Scholar
  6. 6.
    Que-Gewirth, N. S. and Sullenger, B. A. (2007) Gene therapy progress and prospects: RNA aptamers. Gene Therapy 14, 283–291.PubMedCrossRefGoogle Scholar
  7. 7.
    Farokhzad, O. C., Cheng, J., Teply, B. A., Sherifi, I., Jon, S., Kantoff, P. W., Richie, J. P., and Langer, R. (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. U.S.A. 103, 6315–6320.PubMedCrossRefGoogle Scholar
  8. 8.
    Proske, D., Blank, M., Buhmann, R., and Resch, A. (2005) Aptamers-basic research, drug development, and clinical applications.Appl. Microbiol. Biotechnol. 69, 367–374.PubMedCrossRefGoogle Scholar
  9. 9.
    Chu, T. C., Marks, J. W. III, lavery, L, A., Faulkner, S., Rosenblum, M. G., Ellington, A. D., and Levy, M. (2006) Aptamer:Toxin conjugates that specifically target prostate tumor cells. Cancer Res. 66, 5989–5992.PubMedCrossRefGoogle Scholar
  10. 10.
    Polakis, P. (2000) Wnt signaling and cancer. Genes Dev. 14, 1837–1851.PubMedGoogle Scholar
  11. 11.
    Huelsken, J. and Birchmeier, W. (2001) New aspects of Wnt signaling pathways in higher vertebrates. Curr. Opin. Genet. Dev. 11, 547–553.PubMedCrossRefGoogle Scholar
  12. 12.
    Gregorieff, A. and Clevers, H. (2005) Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev. 19, 877–890.PubMedCrossRefGoogle Scholar
  13. 13.
    Tetsu, O. and McCormick, F. (1999) β:-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426.PubMedCrossRefGoogle Scholar
  14. 14.
    He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., Morin, P. J., Vogelstein, B., and Kinzler, K. W. (1998) Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512.PubMedCrossRefGoogle Scholar
  15. 15.
    Sato, S., Idogawa, M., Honda, K., Fujii, G., Kawashima, H., Takekuma, K., Hoshika, A., Hirohashi, S., and Yamada, T. (2005) β-Catenin interacts with the FUS proto-oncogene product and regulates pre mRNA splicing. Gastroenterology 129, 1225–1236.PubMedCrossRefGoogle Scholar
  16. 16.
    Lee, H. K., Choi, Y. S., Park, Y. A., and Jeong, S. (2006) Modulation of oncogenic transcription and alternative splicing by β-catenin and an RNA aptamer in colon cancer cells. Cancer Res. 66, 10560–10566.PubMedCrossRefGoogle Scholar
  17. 17.
    Lee, H. K. and Jeong, S. (2006) β:-Catenin stabilizes Cyclooxygenase-2 mRNA by interacting with AU-rich elements of 3'-UTR. Nucleic Acids Res. 34, 5705–5714.PubMedCrossRefGoogle Scholar
  18. 18.
    Lee, H. K., Kwak, H. Y., Hur, J., Kim, I. A., Yang, J. S., Park, M. W., Yu, J., and Jeong, S. (2007) β-Catenin regulates multiple steps of RNA metabolism as revealed by the RNA aptamer in colon cancer cells. Cancer Res. 67, 9315–9321.PubMedCrossRefGoogle Scholar
  19. 19.
    Miller, D., Laber, D., Bates, P., Trent, J., Taft, B., and Kloecker, G.H. (2006) Extended phase I study of AS1411 in renal and non-small cell lung cancers. Ann. Oncol. 17, ix147–148.Google Scholar
  20. 20.
    Famulok, M. and Mayer, G. (2005) Intramers and aptamers: applications in protein-function analyses and potential for drug screening. Chem. Bio. Chem. 6, 19–26.PubMedGoogle Scholar
  21. 21.
    Choi, K. H., Park, M. W., Lee, S. Y., Jeon, M. Y., Kim, M. Y., Lee, H. K., Yu, J., J. W. (2006) In vitro selection of RNA molecules that bind specific ligands. Mol Cancer Ther 5, 1418–1434.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.National Research Laboratory for RNA Cell Bioloigy and Department of Molecular BiologyDankook UniversityRepublic of Korea

Personalised recommendations