Designing Adenoviral Vectors for Tumor-Specific Targeting

  • Ramon AlemanyEmail author
Part of the Methods in Molecular Biology™ book series (MIMB, volume 542)


Adenovirus provides an attractive candidate tool to destroy tumor cells. However, to fulfill the expectations, selective targeting of tumor cells is mandatory. This chapter reviews critical aspects in the design of tumor-targeted adenovirus vectors and oncolytic adenoviruses. The review focuses on genetic modifications of capsid and regulatory genes that can enhance the therapeutic index of these agents after systemic administration. Selectivity will be considered at different levels: biodistribution selectivity of the injected virus particles, transductional selectivity defined as cell receptor interactions and trafficking that lead to virus gene expression, transcriptional selectivity by means of tumor-selective promoters, and mutation-rescue selectivity to achieve selective replication. Proper assays to analyze selectivity at these different levels are discussed. Finally, mutations and transgenes that can enhance the potency and efficacy of tumor-targeted adenoviruses from virocentric or immunocentric points of view will be presented.


Adenovirus oncolytic targeting tumor vector 



I thank the collaborative effort of the Virus Therapy Group at the Institut Català d?Oncologia involved in the author’s results mentioned herein. Special thanks to Manel Cascallo and Juan Fueyo for their close collaboration. Thanks to Cristina Balague for critical reading of the manuscript. The author is supported by Bio2005-08682-C03-01 from the Ministerio de Ciencia y Tecnología of the Government of Spain, the EU 6th FP research contract 18700 (Theradpox, RA), and the Network of Cooperative Research on Cancer (C03-10), Instituto de Salud Carlos III of the Ministerio de Sanidad y Consumo, Government of Spain.


  1. 1.
    Leopold PL, Crystal RG. (2007) Intracellular trafficking of adenovirus: many means to many ends. Adv Drug Deliv Rev 59:810–21.PubMedCrossRefGoogle Scholar
  2. 2.
    Jiang H, Gomez-Manzano C, Aoki H, et al. (2007) Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J Natl Cancer Inst 99:1410–4.PubMedCrossRefGoogle Scholar
  3. 3.
    Ito H, Aoki H, Kuhnel F, et al. (2006) Autophagic cell death of malignant glioma cells induced by a conditionally replicating adenovirus. J Natl Cancer Inst 98:625–36.PubMedCrossRefGoogle Scholar
  4. 4.
    Volpers C, Kochanek S. (2004) Adenoviral vectors for gene transfer and therapy. J Gene Med 6 Suppl 1:S164–71.PubMedCrossRefGoogle Scholar
  5. 5.
    Alemany R. (2007) Cancer selective adenoviruses. Mol Aspects Med 28:42–58.PubMedCrossRefGoogle Scholar
  6. 6.
    Kreppel F, Kochanek S. (2008) Modification of adenovirus gene transfer vectors with synthetic polymers: a scientific review and technical guide. Mol Ther 16:16–29.PubMedCrossRefGoogle Scholar
  7. 7.
    Lievens J, Snoeys J, Vekemans K, et al. (2004) The size of sinusoidal fenestrae is a critical determinant of hepatocyte transduction after adenoviral gene transfer. Gene Ther 11:1523–31.PubMedCrossRefGoogle Scholar
  8. 8.
    Bernt KM, Ni S, Gaggar A, Li ZY, Shayakhmetov DM, Lieber A. (2003) The effect of sequestration by nontarget tissues on anti-tumor efficacy of systemically applied, conditionally replicating adenovirus vectors. Mol Ther 8:746–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Shayakhmetov DM, Li ZY, Ni S, Lieber A. (2004) Analysis of adenovirus sequestration in the liver, transduction of hepatic cells, and innate toxicity after injection of fiber-modified vectors. J Virol 78:5368–81.PubMedCrossRefGoogle Scholar
  10. 10.
    Morrissey RE, Horvath C, Snyder EA, Patrick J, MacDonald JS. (2002) Rodent nonclinical safety evaluation studies of SCH 58500, an adenoviral vector for the p53 gene. Toxicol Sci 65:266–75.PubMedCrossRefGoogle Scholar
  11. 11.
    Morrissey RE, Horvath C, Snyder EA, et al. (2002) Porcine toxicology studies of SCH 58500, an adenoviral vector for the p53 gene. Toxicol Sci 65:256–65.PubMedCrossRefGoogle Scholar
  12. 12.
    Cichon G, Schmidt HH, Benhidjeb T, et al. (1999) Intravenous administration of recombinant adenoviruses causes thrombocytopenia, anemia and erythroblastosis in rabbits. J Gene Med 1:360–71.PubMedCrossRefGoogle Scholar
  13. 13.
    Lyons M, Onion D, Green NK, et al. (2006) Adenovirus type 5 interactions with human blood cells may compromise systemic delivery. Mol Ther 14:118–28.PubMedCrossRefGoogle Scholar
  14. 14.
    Nicol CG, Graham D, Miller WH, et al. (2004) Effect of adenovirus serotype 5 fiber and penton modifications on in vivo tropism in rats. Mol Ther 10:344–54.PubMedCrossRefGoogle Scholar
  15. 15.
    Steiner I, Aebi C, Ridolfi Luthy A, Wagner B, Leibundgut K. (2008) Fatal adenovirus hepatitis during maintenance therapy for childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 50(3):647–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Hamid O, Varterasian ML, Wadler S, et al. (2003) Phase II trial of intravenous CI-1042 in patients with metastatic colorectal cancer. J Clin Oncol 21:1498–504.PubMedCrossRefGoogle Scholar
  17. 17.
    Connelly S. (1999) Adenoviral vectors for liver-directed gene therapy. Curr Opin Mol Ther 1:565–72.PubMedGoogle Scholar
  18. 18.
    Stone D, Liu Y, Shayakhmetov D, Li ZY, Ni S, Lieber A. (2007) Adenovirus-platelet interaction in blood causes virus sequestration to the reticuloendothelial system of the liver. J Virol 81:4866–71.PubMedCrossRefGoogle Scholar
  19. 19.
    Baker AH, McVey JH, Waddington SN, Di Paolo NC, Shayakhmetov DM. (2007) The influence of blood on in vivo adenovirus bio-distribution and transduction. Mol Ther 15:1410–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Cotter MJ, Zaiss AK, Muruve DA. (2005) Neutrophils interact with adenovirus vectors via Fc receptors and complement receptor 1. J Virol 79:14622–31.PubMedCrossRefGoogle Scholar
  21. 21.
    Shayakhmetov DM, Gaggar A, Ni S, Li ZY, Lieber A. (2005) Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J Virol 79:7478–91.PubMedCrossRefGoogle Scholar
  22. 22.
    Parker AL, Waddington SN, Nicol CG, et al. (2006) Multiple vitamin K-dependent coagulation zymogens promote adenovirus-mediated gene delivery to hepatocytes. Blood 108:2554–61.PubMedCrossRefGoogle Scholar
  23. 23.
    van Beusechem VW, van Rijswijk AL, van Es HH, Haisma HJ, Pinedo HM, Gerritsen WR. (2000) Recombinant adenovirus vectors with knobless fibers for targeted gene transfer. Gene Ther 7:1940–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Krasnykh V, Belousova N, Korokhov N, Mikheeva G, Curiel DT. (2001) Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin. J Virol 75:4176–83.PubMedCrossRefGoogle Scholar
  25. 25.
    Magnusson MK, Hong SS, Boulanger P, Lindholm L. (2001) Genetic retargeting of adenovirus: novel strategy employing “deknobbing” of the fiber. J Virol 75:7280–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Mercier GT, Campbell JA, Chappell JD, Stehle T, Dermody TS, Barry MA. (2004) A chimeric adenovirus vector encoding reovirus attachment protein sigma1 targets cells expressing junctional adhesion molecule 1. Proc Natl Acad Sci USA 101:6188–93.PubMedCrossRefGoogle Scholar
  27. 27.
    Henning P, Lundgren E, Carlsson M, et al. (2006) Adenovirus type 5 fiber knob domain has a critical role in fiber protein synthesis and encapsidation. J Gen Virol 87:3151–60.PubMedCrossRefGoogle Scholar
  28. 28.
    Nicklin SA, Wu E, Nemerow GR, Baker AH. (2005) The influence of adenovirus fiber structure and function on vector development for gene therapy. Mol Ther 12:384–93.PubMedCrossRefGoogle Scholar
  29. 29.
    Hedley SJ, Auf der Maur A, Hohn S, et al. (2006) An adenovirus vector with a chimeric fiber incorporating stabilized single chain antibody achieves targeted gene delivery. Gene Ther 13:88–94.PubMedCrossRefGoogle Scholar
  30. 30.
    Vellinga J, de Vrij J, Myhre S, et al. (2007) Efficient incorporation of a functional hyper-stable single-chain antibody fragment protein-IX fusion in the adenovirus capsid. Gene Ther 14:664–70.PubMedCrossRefGoogle Scholar
  31. 31.
    Vigne E, Mahfouz I, Dedieu JF, Brie A, Perricaudet M, Yeh P. (1999) RGD inclusion in the hexon monomer provides adenovirus type 5-based vectors with a fiber knob-independent pathway for infection. J Virol 73:5156–61.PubMedGoogle Scholar
  32. 32.
    Campos SK, Barry MA. (2006) Comparison of adenovirus fiber, protein IX, and hexon capsomeres as scaffolds for vector purification and cell targeting. Virology 349:453–62.PubMedCrossRefGoogle Scholar
  33. 33.
    Sadeghi H, Hitt MM. (2005) Transcriptionally targeted adenovirus vectors. Curr Gene Ther 5:411–27.PubMedCrossRefGoogle Scholar
  34. 34.
    Fuerer C, Iggo R. (2002) Adenoviruses with Tcf binding sites in multiple early promoters show enhanced selectivity for tumour cells with constitutive activation of the wnt signalling pathway. Gene Ther 9:270–81.PubMedCrossRefGoogle Scholar
  35. 35.
    Working PK, Lin A, Borellini F. (2005) Meeting product development challenges in manufacturing clinical grade oncolytic adenoviruses. Oncogene 24:7792–801.PubMedCrossRefGoogle Scholar
  36. 36.
    Yu DC, Working P, Ando D. (2002) Selectively replicating oncolytic adenoviruses as cancer therapeutics. Curr Opin Mol Ther 4:435–43.PubMedGoogle Scholar
  37. 37.
    Bischoff JR, Kirn DH, Williams A, et al. (1996) An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274:373–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Holm PS, Bergmann S, Jurchott K, et al. (2002) YB-1 relocates to the nucleus in adenovirus-infected cells and facilitates viral replication by inducing E2 gene expression through the E2 late promoter. J Biol Chem 277:10427–34.PubMedCrossRefGoogle Scholar
  39. 39.
    Fueyo J, Gomez-Manzano C, Alemany R, et al. (2000) A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 19:2–12.PubMedCrossRefGoogle Scholar
  40. 40.
    Heise C, Hermiston T, Johnson L, et al. (2000) An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 6:1134–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Howe JA, Demers GW, Johnson DE, et al. (2000) Evaluation of E1-mutant adenoviruses as conditionally replicating agents for cancer therapy. Mol Ther 2:485–95.PubMedCrossRefGoogle Scholar
  42. 42.
    Duque PM, Alonso C, Sanchez-Prieto R, et al. (1999) Adenovirus lacking the 19-kDa and 55-kDa E1B genes exerts a marked cytotoxic effect in human malignant cells. Cancer Gene Ther 6:554–63.PubMedCrossRefGoogle Scholar
  43. 43.
    Sauthoff H, Heitner S, Rom WN, Hay JG. (2000) Deletion of the adenoviral E1b-19 kD gene enhances tumor cell killing of a replicating adenoviral vector. Hum Gene Ther 11:379–88.PubMedCrossRefGoogle Scholar
  44. 44.
    Williams BR. (1999) PKR: a sentinel kinase for cellular stress. Oncogene 18:6112–20.PubMedCrossRefGoogle Scholar
  45. 45.
    Grander D, Einhorn S. (1998) Interferon and malignant disease—how does it work and why doesn't it always? Acta Oncol 37:331–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Cascallo M, Capella G, Mazo A, Alemany R. (2003) Ras-dependent oncolysis with an adenovirus VAI mutant. Cancer Res 63:5544–50.PubMedGoogle Scholar
  47. 47.
    Cascallo M, Gros A, Bayo N, Serrano T, Capella G, Alemany R. (2006) Deletion of VAI and VAII RNA genes in the design of oncolytic adenoviruses. Hum Gene Ther 17:929–40.PubMedCrossRefGoogle Scholar
  48. 48.
    Bergmann M, Romirer I, Sachet M, et al. (2001) A genetically engineered influenza A virus with ras-dependent oncolytic properties. Cancer Res 61:8188–93.PubMedGoogle Scholar
  49. 49.
    Farassati F, Yang AD, Lee PW. (2001) Oncogenes in Ras signalling pathway dictate host-cell permissiveness to herpes simplex virus 1. Nat Cell Biol 3:745–50.PubMedCrossRefGoogle Scholar
  50. 50.
    Youil R, Toner TJ, Su Q, et al. (2003) Comparative analysis of the effects of packaging signal, transgene orientation, promoters, polyadenylation signals, and E3 region on growth properties of first-generation adenoviruses. Hum Gene Ther 14:1017–34.PubMedCrossRefGoogle Scholar
  51. 51.
    Suzuki K, Fueyo J, Krasnykh V, Reynolds PN, Curiel DT, Alemany R. (2001) A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res 7:120–6.PubMedGoogle Scholar
  52. 52.
    Doronin K, Toth K, Kuppuswamy M, Krajcsi P, Tollefson AE, Wold WS. (2003) Overexpression of the ADP (E3-11.6K) protein increases cell lysis and spread of adenovirus. Virology 305:378–87.PubMedCrossRefGoogle Scholar
  53. 53.
    Suzuki K, Alemany R, Yamamoto M, Curiel DT. (2002) The presence of the adenovirus E3 region improves the oncolytic potency of conditionally replicative adenoviruses. Clin Cancer Res 8:3348–59.PubMedGoogle Scholar
  54. 54.
    Yu DC, Chen Y, Seng M, Dilley J, Henderson DR. (1999) The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts [published erratum appears in Cancer Res 2000 Feb 15;60(4):1150]. Cancer Res 59:4200–3.PubMedGoogle Scholar
  55. 55.
    Zou A, Atencio I, Huang WM, Horn M, Ramachandra M. (2004) Overexpression of adenovirus E3-11.6K protein induces cell killing by both caspase-dependent and caspase-independent mechanisms. Virology 326: 240–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Ying B, Wold WS. (2003) Adenovirus ADP protein (E3-11.6K), which is required for efficient cell lysis and virus release, interacts with human MAD2B. Virology 313:224–34.PubMedCrossRefGoogle Scholar
  57. 57.
    Kuppuswamy M, Spencer JF, Doronin K, Tollefson AE, Wold WS, Toth K. (2005) Oncolytic adenovirus that overproduces ADP and replicates selectively in tumors due to hTERT promoter-regulated E4 gene expression. Gene Ther 12:1608–17.PubMedCrossRefGoogle Scholar
  58. 58.
    Yan W, Kitzes G, Dormishian F, et al. (2003) Developing novel oncolytic adenoviruses through bioselection. J Virol 77:2640–50.PubMedCrossRefGoogle Scholar
  59. 59.
    Subramanian T, Vijayalingam S, Chinnadurai G. (2006) Genetic identification of adenovirus type 5 genes that influence viral spread. J Virol 80:2000–12.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Translational Research LaboratoryCatalan Institute of OncologyBarcelonaSpain

Personalised recommendations