Advertisement

The Development of Gene Therapy: From Monogenic Recessive Disorders to Complex Diseases Such as Cancer

  • Jean-Pierre Gillet
  • Benjamin Macadangdang
  • Robert L. Fathke
  • Michael M. Gottesman
  • Chava Kimchi-Sarfaty
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 542)

Summary

During the last 4 decades, gene therapy has moved from preclinical to clinical studies for many diseases ranging from monogenic recessive disorders such as hemophilia to more complex diseases such as cancer, cardiovascular disorders, and human immunodeficiency virus (HIV). To date, more than 1,340 gene therapy clinical trials have been completed, are ongoing, or have been approved in 28 countries, using more than 100 genes. Most of those clinical trials (66.5%) were aimed at the treatment of cancer. Early hype, failures, and tragic events have now largely been replaced by the necessary stepwise progress needed to realize clinical benefits. We now understand better the strengths and weaknesses of various gene transfer vectors; this facilitates the choice of appropriate vectors for individual diseases. Continuous advances in our understanding of tumor biology have allowed the development of elegant, more efficient, and less toxic treatment strategies. In this introductory chapter, we review the history of gene therapy since the early 1960s and present in detail two major recurring themes in gene therapy: (1) the development of vector and delivery systems and (2) the design of strategies to fight or cure particular diseases. The field of cancer gene therapy experienced an “awkward adolescence.” Although this field has certainly not yet reached maturity, it still holds the potential of alleviating the suffering of many individuals with cancer.

Key Words

Antiangiogenic therapy chemoinducible gene therapy gene delivery systems gene silencing history of gene therapy immunotherapy oncolytic viruses suicide gene therapy tumor suppressors 

References

  1. 1..
    Lederberg, J. (1963) Biological future of man. In: Wolstenholme, G., ed. Man and His Future. London: Churchill, 265.Google Scholar
  2. 2..
    Tatum, E. (1967) Molecular biology, nucleic acids, and the future of medicine. In: Lyght, C.E., ed. Reflections on Research and the Future of Medicine. New York: McGraw-Hill, 31–49.Google Scholar
  3. 3..
    Tatum, E. L. (1966) Molecular biology, nucleic acids, and the future of medicine. Perspect. Biol. Med. 10, 19–32.PubMedGoogle Scholar
  4. 4..
    Lederberg, J. (1966) Experimental genetics and human evolution. Am. Naturalist 100, 519–531.CrossRefGoogle Scholar
  5. 5..
    Burnet, M. (1971) Genes, Dreams and Reality. New York: Basic Books. 71.Google Scholar
  6. 6..
    Culliton, B. J. (1989) French Anderson's 20-year crusade. Science 246, 748.PubMedCrossRefGoogle Scholar
  7. 7..
    Nirenberg, M. W. (1967) Will society be prepared? Science 157, 633.PubMedCrossRefGoogle Scholar
  8. 8..
    Sinsheimer, R. (1969) The prospect for designed genetic change. Am. Sci. 57, 134–142.PubMedGoogle Scholar
  9. 9..
    Terheggen, H., Schwenk, A., Van Sande, M., Lowenthal, A., and Columbo, J. (1969) Argininemia with arginase deficiency. Lancet 2, 748–749.CrossRefGoogle Scholar
  10. 10..
    Rogers, S. (1966) Shope papilloma virus: a passenger in man and its significance to the potential control of the host genome. Nature 212, 1220–1222.PubMedCrossRefGoogle Scholar
  11. 11..
    Meselson, M., and Yuan, R. (1968) DNA restriction enzyme from E. coli. Nature 217, 1110–1114.PubMedCrossRefGoogle Scholar
  12. 12..
    Kelly, T. J., Jr., and Smith, H. O. (1970) A restriction enzyme from Hemophilus influenzae. II. J. Mol. Biol. 51, 393–409.PubMedCrossRefGoogle Scholar
  13. 13..
    Smith, H. O., and Wilcox, K. W. (1970) A restriction enzyme from Hemophilus influenzae. I. Purification and general properties. J. Mol. Biol. 51, 379–391.PubMedCrossRefGoogle Scholar
  14. 14..
    Danna, K., and Nathans, D. (1971) Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae. Proc. Natl. Acad. Sci. USA 68, 2913–2917.PubMedCrossRefGoogle Scholar
  15. 15..
    Wigler, M., Silverstein, S., Lee, L. S., Pellicer, A., Cheng, Y., and Axel, R. (1977) Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell 11, 223–232.PubMedCrossRefGoogle Scholar
  16. 16..
    Anderson, W. F., Killos, L., Sanders-Haigh, L., Kretschmer, P. J., and Diacumakos, E. G. (1980) Replication and expression of thymidine kinase and human globin genes microinjected into mouse fibroblasts. Proc. Natl. Acad. Sci. USA 77, 5399–5403.PubMedCrossRefGoogle Scholar
  17. 17..
    Anderson, W. F., and Fletcher, J. C. (1980) Sounding boards. Gene therapy in human beings: when is it ethical to begin? N. Engl. J. Med. 303, 1293–1297.PubMedCrossRefGoogle Scholar
  18. 18..
    Miller, A. D., Jolly, D. J., Friedmann, T., and Verma, I. M. (1983) A transmissible retrovirus expressing human hypoxanthine phosphoribosyltransferase (HPRT): gene transfer into cells obtained from humans deficient in HPRT. Proc. Natl. Acad. Sci. USA 80, 4709–4713.PubMedCrossRefGoogle Scholar
  19. 19..
    Willis, R. C., Jolly, D. J., Miller, A. D., Plent, M. M., Esty, A. C., Anderson, P. J., Chang, H. C., Jones, O. W., Seegmiller, J. E., and Friedmann, T. (1984) Partial phenotypic correction of human Lesch-Nyhan (hypoxanthine-guanine phosphoribosyltransferase-deficient) lymphoblasts with a transmissible retroviral vector. J. Biol. Chem. 259, 7842–7849.PubMedGoogle Scholar
  20. 20..
    Joyner, A., Keller, G., Phillips, R. A., and Bernstein, A. (1983) Retrovirus transfer of a bacterial gene into mouse haematopoietic progenitor cells. Nature 305, 556–558.PubMedCrossRefGoogle Scholar
  21. 21..
    Watanabe, S., and Temin, H. M. (1983) Construction of a helper cell line for avian reticuloendotheliosis virus cloning vectors. Mol. Cell. Biol. 3, 2241–2249.PubMedGoogle Scholar
  22. 22..
    Mann, R., Mulligan, R. C., and Baltimore, D. (1983) Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33, 153–159.PubMedCrossRefGoogle Scholar
  23. 23..
    Williams, D. A., Lemischka, I. R., Nathan, D. G., and Mulligan, R. C. (1984) Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature 310, 476–480.PubMedCrossRefGoogle Scholar
  24. 24..
    Van Doren, K., Hanahan, D., and Gluzman, Y. (1984) Infection of eukaryotic cells by helper-independent recombinant adenoviruses: early region 1 is not obligatory for integration of viral DNA. J. Virol. 50, 606–614.PubMedGoogle Scholar
  25. 25..
    Hermonat, P. L., and Muzyczka, N. (1984) Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc. Natl. Acad. Sci. USA 81, 6466–6470.PubMedCrossRefGoogle Scholar
  26. 26..
    Tratschin, J. D., West, M. H., Sandbank, T., and Carter, B. J. (1984) A human parvovirus, adeno-associated virus, as a eukaryotic vector: transient expression and encapsidation of the prokaryotic gene for chloramphenicol acetyltransferase. Mol. Cell. Biol. 4, 2072–2081.PubMedGoogle Scholar
  27. 27..
    Eglitis, M. A., Kantoff, P., Gilboa, E., and Anderson, W. F. (1985) Gene expression in mice after high efficiency retroviral-mediated gene transfer. Science 230, 1395–1398.PubMedCrossRefGoogle Scholar
  28. 28..
    Rosenberg, S. A., Aebersold, P., Cornetta, K., Kasid, A., Morgan, R. A., Moen, R., Karson, E. M., Lotze, M. T., Yang, J. C., Topalian, S. L., et al. (1990) Gene transfer into humans--immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N. Engl. J. Med. 323, 570–578.PubMedCrossRefGoogle Scholar
  29. 29..
    Blaese, R. M., Culver, K. W., Miller, A. D., Carter, C. S., Fleisher, T., Clerici, M., Shearer, G., Chang, L., Chiang, Y., Tolstoshev, P., Greenblatt, J. J., Rosenberg, S. A., Klein, H., Berger, M., Mullen, C. A., Ramsey, W. J., Muul, L., Morgan, R. A., and Anderson, W. F. (1995) T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 270, 475–480.PubMedCrossRefGoogle Scholar
  30. 30..
    Wilson, J. M., Grossman, M., Raper, S. E., Baker, J. R., Jr., Newton, R. S., and Thoene, J. G. (1992) Ex vivo gene therapy of familial hypercholesterolemia. Hum. Gene Ther. 3, 179–222.PubMedCrossRefGoogle Scholar
  31. 31..
    Grossman, M., Raper, S. E., Kozarsky, K., Stein, E. A., Engelhardt, J. F., Muller, D., Lupien, P. J., and Wilson, J. M. (1994) Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolaemia. Nat. Genet. 6, 335–341.PubMedCrossRefGoogle Scholar
  32. 32..
    Grossman, M., Rader, D. J., Muller, D. W., Kolansky, D. M., Kozarsky, K., Clark, B. J., 3rd, Stein, E. A., Lupien, P. J., Brewer, H. B., Jr., Raper, S. E., et al. (1995) A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolaemia. Nat. Med. 1, 1148–1154.PubMedCrossRefGoogle Scholar
  33. 33..
    Cavazzana-Calvo, M., Hacein-Bey, S., de Saint Basile, G., Gross, F., Yvon, E., Nusbaum, P., Selz, F., Hue, C., Certain, S., Casanova, J. L., Bousso, P., Deist, F. L., and Fischer, A. (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672.PubMedCrossRefGoogle Scholar
  34. 34..
    Hacein-Bey-Abina, S., Von Kalle, C., Schmidt, M., McCormack, M. P., Wulffraat, N., Leboulch, P., Lim, A., Osborne, C. S., Pawliuk, R., Morillon, E., Sorensen, R., Forster, A., Fraser, P., Cohen, J. I., de Saint Basile, G., Alexander, I., Wintergerst, U., Frebourg, T., Aurias, A., Stoppa-Lyonnet, D., Romana, S., Radford-Weiss, I., Gross, F., Valensi, F., Delabesse, E., Macintyre, E., Sigaux, F., Soulier, J., Leiva, L. E., Wissler, M., Prinz, C., Rabbitts, T. H., Le Deist, F., Fischer, A., and Cavazzana-Calvo, M. (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419.PubMedCrossRefGoogle Scholar
  35. 35..
    Nienhuis, A. W., Dunbar, C. E., and Sorrentino, B. P. (2006) Genotoxicity of retroviral integration in hematopoietic cells. Mol. Ther. 13, 1031–1049.PubMedCrossRefGoogle Scholar
  36. 36..
    Bester, A. C., Schwartz, M., Schmidt, M., Garrigue, A., Hacein-Bey-Abina, S., Cavazzana-Calvo, M., Ben-Porat, N., Von Kalle, C., Fischer, A., and Kerem, B. (2006) Fragile sites are preferential targets for integrations of MLV vectors in gene therapy. Gene Ther. 13, 1057–1059.PubMedCrossRefGoogle Scholar
  37. 37..
    Dave, U. P., Jenkins, N. A., and Copeland, N. G. (2004) Gene therapy insertional mutagenesis insights. Science 303, 333.PubMedCrossRefGoogle Scholar
  38. 38..
    Aiuti, A., Slavin, S., Aker, M., Ficara, F., Deola, S., Mortellaro, A., Morecki, S., Andolfi, G., Tabucchi, A., Carlucci, F., Marinello, E., Cattaneo, F., Vai, S., Servida, P., Miniero, R., Roncarolo, M. G., and Bordignon, C. (2002) Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296, 2410–2413.PubMedCrossRefGoogle Scholar
  39. 39..
    Gaspar, H. B., Bjorkegren, E., Parsley, K., Gilmour, K. C., King, D., Sinclair, J., Zhang, F., Giannakopoulos, A., Adams, S., Fairbanks, L. D., Gaspar, J., Henderson, L., Xu-Bayford, J. H., Davies, E. G., Veys, P. A., Kinnon, C., and Thrasher, A. J. (2006) Successful reconstitution of immunity in ADA-SCID by stem cell gene therapy following cessation of PEG-ADA and use of mild preconditioning. Mol. Ther. 14, 505–513.PubMedCrossRefGoogle Scholar
  40. 40..
    Rainov, N. G. (2000) A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum. Gene Ther. 11, 2389–2401.PubMedCrossRefGoogle Scholar
  41. 41..
    Khuri, F. R., Nemunaitis, J., Ganly, I., Arseneau, J., Tannock, I. F., Romel, L., Gore, M., Ironside, J., MacDougall, R. H., Heise, C., Randlev, B., Gillenwater, A. M., Bruso, P., Kaye, S. B., Hong, W. K., and Kirn, D. H. (2000) a controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat. Med. 6, 879–885.PubMedCrossRefGoogle Scholar
  42. 42..
    Alton, E. (2007) Progress and prospects: gene therapy clinical trials (part 1). Gene Ther. 14, 1439–1447.PubMedCrossRefGoogle Scholar
  43. 43..
    Griesenbach, U. (2007) Progress and prospects: gene therapy clinical trials (part 2). Gene Ther. 14, 1555–1563.PubMedCrossRefGoogle Scholar
  44. 44..
    Edelstein, M. L., Abedi, M. R., and Wixon, J. (2007) Gene therapy clinical trials worldwide to 2007--an update. J. Gene Med. 9, 833–842.PubMedCrossRefGoogle Scholar
  45. 45..
    Berns, A. (2004) Good news for gene therapy. N. Engl. J. Med. 350, 1679–1680.PubMedCrossRefGoogle Scholar
  46. 46..
    Aghi, M., Hochberg, F., and Breakefield, X. O. (2000) Prodrug activation enzymes in cancer gene therapy. J. Gene Med. 2, 148–164.PubMedCrossRefGoogle Scholar
  47. 47..
    Rux, J. J., and Burnett, R. M. (2004) Adenovirus structure. Hum. Gene Ther. 15, 1167–1176.PubMedCrossRefGoogle Scholar
  48. 48..
    Majhen, D., and Ambriovic-Ristov, A. (2006) Adenoviral vectors – how to use them in cancer gene therapy? Virus Res. 119, 121–133.PubMedCrossRefGoogle Scholar
  49. 49..
    Xia, D., Henry, L. J., Gerard, R. D., and Deisenhofer, J. (1994) Crystal structure of the receptor-binding domain of adenovirus type 5 fiber protein at 1.7 A resolution. Structure 2, 1259–1270.PubMedCrossRefGoogle Scholar
  50. 50..
    Bergelson, J. M., Cunningham, J. A., Droguett, G., Kurt-Jones, E. A., Krithivas, A., Hong, J. S., Horwitz, M. S., Crowell, R. L., and Finberg, R. W. (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320–1323.PubMedCrossRefGoogle Scholar
  51. 51..
    Li, J., Lad, S., Yang, G., Luo, Y., Iacobelli-Martinez, M., Primus, F. J., Reisfeld, R. A., and Li, E. (2006) Adenovirus fiber shaft contains a trimerization element that supports peptide fusion for targeted gene delivery. J. Virol. 80, 12324–12331.PubMedCrossRefGoogle Scholar
  52. 52..
    Meier, O., Boucke, K., Hammer, S. V., Keller, S., Stidwill, R. P., Hemmi, S., and Greber, U. F. (2002) Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J. Cell. Biol. 158, 1119–1131.PubMedCrossRefGoogle Scholar
  53. 53..
    Young, L. S., Searle, P. F., Onion, D., and Mautner, V. (2006) Viral gene therapy strategies: from basic science to clinical application. J. Pathol. 208, 299–318.PubMedCrossRefGoogle Scholar
  54. 54..
    Bischoff, J. R., Kirn, D. H., Williams, A., Heise, C., Horn, S., Muna, M., Ng, L., Nye, J. A., Sampson-Johannes, A., Fattaey, A., and McCormick, F. (1996) An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373–376.PubMedCrossRefGoogle Scholar
  55. 55..
    Heise, C., Hermiston, T., Johnson, L., Brooks, G., Sampson-Johannes, A., Williams, A., Hawkins, L., and Kirn, D. (2000) An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat. Med. 6, 1134–1139.PubMedCrossRefGoogle Scholar
  56. 56..
    Fukuda, K., Abei, M., Ugai, H., Seo, E., Wakayama, M., Murata, T., Todoroki, T., Tanaka, N., Hamada, H., and Yokoyama, K. K. (2003) E1A, E1B double-restricted adenovirus for oncolytic gene therapy of gallbladder cancer. Cancer Res. 63, 4434–4440.PubMedGoogle Scholar
  57. 57..
    Balague, C., Noya, F., Alemany, R., Chow, L. T., and Curiel, D. T. (2001) Human papillomavirus E6E7-mediated adenovirus cell killing: selectivity of mutant adenovirus replication in organotypic cultures of human keratinocytes. J. Virol. 75, 7602–7611.PubMedCrossRefGoogle Scholar
  58. 58..
    Ali, H., LeRoy, G., Bridge, G., and Flint, S. J. (2007) The adenovirus L4 33-kilodalton protein binds to intragenic sequences of the major late promoter required for late phase-specific stimulation of transcription. J. Virol. 81, 1327–1338.PubMedCrossRefGoogle Scholar
  59. 59..
    Kaplan, J. M. (2005) Adenovirus-based cancer gene therapy. Curr. Gene Ther. 5, 595–605.PubMedCrossRefGoogle Scholar
  60. 60..
    Flint, J., and Shenk, T. (1997) Viral transactivating proteins. Annu. Rev. Genet. 31, 177–212.PubMedCrossRefGoogle Scholar
  61. 61..
    Yew, P. R., and Berk, A. J. (1992) Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature 357, 82–85.PubMedCrossRefGoogle Scholar
  62. 62..
    Mizuguchi, H., and Hayakawa, T. (2004) Targeted adenovirus vectors. Hum. Gene Ther. 15, 1034–1044.PubMedCrossRefGoogle Scholar
  63. 63..
    Raper, S. E., Chirmule, N., Lee, F. S., Wivel, N. A., Bagg, A., Gao, G. P., Wilson, J. M., and Batshaw, M. L. (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab. 80, 148–158.PubMedCrossRefGoogle Scholar
  64. 64..
    Bett, A. J., Haddara, W., Prevec, L., and Graham, F. L. (1994) An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc. Natl. Acad. Sci. USA 91, 8802–8806.PubMedCrossRefGoogle Scholar
  65. 65..
    Schaack, J. (2005) Adenovirus vectors deleted for genes essential for viral DNA replication. Front Biosci. 10, 1146–1155.PubMedCrossRefGoogle Scholar
  66. 66..
    Yang, Y., Nunes, F. A., Berencsi, K., Furth, E. E., Gonczol, E., and Wilson, J. M. (1994) Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc. Natl. Acad. Sci. USA 91, 4407–4411.PubMedCrossRefGoogle Scholar
  67. 67..
    Knowles, M. R., Hohneker, K. W., Zhou, Z., Olsen, J. C., Noah, T. L., Hu, P. C., Leigh, M. W., Engelhardt, J. F., Edwards, L. J., Jones, K. R., and et al. (1995) A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis. N. Engl. J. Med. 333, 823–831.PubMedCrossRefGoogle Scholar
  68. 68..
    Amalfitano, A., Hauser, M. A., Hu, H., Serra, D., Begy, C. R., and Chamberlain, J. S. (1998) Production and characterization of improved adenovirus vectors with the E1, E2b, and E3 genes deleted. J. Virol. 72, 926–933.PubMedGoogle Scholar
  69. 69..
    Gorziglia, M. I., Lapcevich, C., Roy, S., Kang, Q., Kadan, M., Wu, V., Pechan, P., and Kaleko, M. (1999) Generation of an adenovirus vector lacking E1, e2a, E3, and all of E4 except open reading frame 3. J. Virol. 73, 6048–6055.PubMedGoogle Scholar
  70. 70..
    Ji, L., Bouvet, M., Price, R. E., Roth, J. A., and Fang, B. (1999) Reduced toxicity, attenuated immunogenicity and efficient mediation of human p53 gene expression in vivo by an adenovirus vector with deleted E1-E3 and inactivated E4 by GAL4-TATA promoter replacement. Gene Ther. 6, 393–402.PubMedCrossRefGoogle Scholar
  71. 71..
    Lieber, A., Steinwaerder, D. S., Carlson, C. A., and Kay, M. A. (1999) Integrating adenovirus-adeno-associated virus hybrid vectors devoid of all viral genes. J. Virol. 73, 9314–9324.PubMedGoogle Scholar
  72. 72..
    Steinwaerder, D. S., Carlson, C. A., and Lieber, A. (1999) Generation of adenovirus vectors devoid of all viral genes by recombination between inverted repeats. J. Virol. 73, 9303–9313.PubMedGoogle Scholar
  73. 73..
    Schiedner, G., Morral, N., Parks, R. J., Wu, Y., Koopmans, S. C., Langston, C., Graham, F. L., Beaudet, A. L., and Kochanek, S. (1998) Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat. Genet. 18, 180–183.PubMedCrossRefGoogle Scholar
  74. 74..
    Gall, J., Kass-Eisler, A., Leinwand, L., and Falck-Pedersen, E. (1996) Adenovirus type 5 and 7 capsid chimera: fiber replacement alters receptor tropism without affecting primary immune neutralization epitopes. J. Virol. 70, 2116–2123.PubMedGoogle Scholar
  75. 75..
    Chillon, M., Bosch, A., Zabner, J., Law, L., Armentano, D., Welsh, M. J., and Davidson, B. L. (1999) Group D adenoviruses infect primary central nervous system cells more efficiently than those from group C. J. Virol. 73, 2537–2540.PubMedGoogle Scholar
  76. 76..
    Shayakhmetov, D. M., Papayannopoulou, T., Stamatoyannopoulos, G., and Lieber, A. (2000) Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector. J. Virol. 74, 2567–2583.PubMedCrossRefGoogle Scholar
  77. 77..
    Denby, L., Work, L. M., Graham, D., Hsu, C., von Seggern, D. J., Nicklin, S. A., and Baker, A. H. (2004) Adenoviral serotype 5 vectors pseudotyped with fibers from subgroup D show modified tropism in vitro and in vivo. Hum. Gene Ther. 15, 1054–1064.PubMedGoogle Scholar
  78. 78..
    Suominen, E., Toivonen, R., Grenman, R., and Savontaus, M. (2006) Head and neck cancer cells are efficiently infected by Ad5/35 hybrid virus. J. Gene Med. 8, 1223–1231.PubMedCrossRefGoogle Scholar
  79. 79..
    Denby, L., Work, L. M., Seggern, D. J., Wu, E., McVey, J. H., Nicklin, S. A., and Baker, A. H. (2007) Development of renal-targeted vectors through combined in vivo phage display and capsid engineering of adenoviral fibers from serotype 19p. Mol. Ther. 15, 1647–1654.PubMedCrossRefGoogle Scholar
  80. 80..
    Wickham, T. J., Tzeng, E., Shears, L. L., 2nd, Roelvink, P. W., Li, Y., Lee, G. M., Brough, D. E., Lizonova, A., and Kovesdi, I. (1997) Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J. Virol. 71, 8221–8229.PubMedGoogle Scholar
  81. 81..
    Hemminki, A., Kanerva, A., Liu, B., Wang, M., Alvarez, R. D., Siegal, G. P., and Curiel, D. T. (2003) Modulation of coxsackie-adenovirus receptor expression for increased adenoviral transgene expression. Cancer Res. 63, 847–853.PubMedGoogle Scholar
  82. 82..
    Vincent, T., Pettersson, R. F., Crystal, R. G., and Leopold, P. L. (2004) Cytokine-mediated downregulation of coxsackievirus-adenovirus receptor in endothelial cells. J. Virol. 78, 8047–8058.PubMedCrossRefGoogle Scholar
  83. 83..
    Oh, I. K., Mok, H., and Park, T. G. (2006) Folate immobilized and PEGylated adenovirus for retargeting to tumor cells. Bioconjug. Chem. 17, 721–727.PubMedCrossRefGoogle Scholar
  84. 84..
    Leamon, C. P., and Low, P. S. (1991) Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc. Natl. Acad. Sci. USA 88, 5572–5576.PubMedCrossRefGoogle Scholar
  85. 85..
    Paillart, J. C., Shehu-Xhilaga, M., Marquet, R., and Mak, J. (2004) Dimerization of retroviral RNA genomes: an inseparable pair. Nat. Rev. Microbiol. 2, 461–472.PubMedCrossRefGoogle Scholar
  86. 86..
    Andrake, M. D., and Skalka, A. M. (1996) Retroviral integrase, putting the pieces together. J. Biol. Chem. 271, 19633–19636.PubMedCrossRefGoogle Scholar
  87. 87..
    Khan, E., Mack, J. P., Katz, R. A., Kulkosky, J., and Skalka, A. M. (1991) Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Res. 19, 851–860.PubMedCrossRefGoogle Scholar
  88. 88..
    Balvay, L., Lopez Lastra, M., Sargueil, B., Darlix, J. L., and Ohlmann, T. (2007) Translational control of retroviruses. Nat. Rev. Microbiol. 5, 128–140.PubMedCrossRefGoogle Scholar
  89. 89..
    Bender, W., Chien, Y. H., Chattopadhyay, S., Vogt, P. K., Gardner, M. B., and Davidson, N. (1978) High-molecular-weight RNAs of AKR, NZB, and wild mouse viruses and avian reticuloendotheliosis virus all have similar dimer structures. J. Virol. 25, 888–896.PubMedGoogle Scholar
  90. 90..
    Goff, S. P., and Lobel, L. I. (1987) Mutants of murine leukemia viruses and retroviral replication. Biochim. Biophys. Acta 907, 93–123.PubMedGoogle Scholar
  91. 91..
    Miller, A. D. (1996) Cell-surface receptors for retroviruses and implications for gene transfer. Proc. Natl. Acad. Sci. USA 93, 11407–11413.PubMedCrossRefGoogle Scholar
  92. 92..
    White, J. M. (1992) Membrane fusion. Science 258, 917–924.PubMedCrossRefGoogle Scholar
  93. 93..
    Thomas, C. E., Ehrhardt, A., and Kay, M. A. (2003) Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 4, 346–358.PubMedCrossRefGoogle Scholar
  94. 94..
    Yi, Y., Hahm, S. H., and Lee, K. H. (2005) Retroviral gene therapy: safety issues and possible solutions. Curr. Gene Ther. 5, 25–35.PubMedGoogle Scholar
  95. 95..
    Xu, L., Mei, M., Haskins, M. E., Nichols, T. C., O'Donnell, P., Cullen, K., Dillow, A., Bellinger, D., and Ponder, K. P. (2007) Immune response after neonatal transfer of a human factor IX-expressing retroviral vector in dogs, cats, and mice. Thromb. Res. 120, 269–280.PubMedCrossRefGoogle Scholar
  96. 96..
    Li, Z., Kustikova, O. S., Kamino, K., Neumann, T., Rhein, M., Grassman, E., Fehse, B., and Baum, C. (2007) Insertional mutagenesis by replication-deficient retroviral vectors encoding the large T oncogene. Ann. N Y Acad. Sci. 1106, 95–113.PubMedCrossRefGoogle Scholar
  97. 97..
    Rodrigues, T., Carvalho, A., Carmo, M., Carrondo, M. J., Alves, P. M., and Cruz, P. E. (2007) Scaleable purification process for gene therapy retroviral vectors. J. Gene Med. 9, 233–243.PubMedCrossRefGoogle Scholar
  98. 98..
    Weber, E., Anderson, W. F., and Kasahara, N. (2001) Recent advances in retrovirus vector-mediated gene therapy: teaching an old vector new tricks. Curr. Opin. Mol. Ther. 3, 439–453.PubMedGoogle Scholar
  99. 99..
    Sinn, P. L., Sauter, S. L., and McCray, P. B., Jr. (2005) Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors – design, biosafety, and production. Gene Ther. 12, 1089–1098.PubMedCrossRefGoogle Scholar
  100. 100..
    Kaiser, J. (2003) Gene therapy. Seeking the cause of induced leukemias in X-SCID trial. Science 299, 495.PubMedCrossRefGoogle Scholar
  101. 101..
    Maxfield, L. F., Fraize, C. D., and Coffin, J. M. (2005) Relationship between retroviral DNA-integration-site selection and host cell transcription. Proc. Natl. Acad. Sci. USA 102, 1436–1441.PubMedCrossRefGoogle Scholar
  102. 102..
    Tan, W., Zhu, K., Segal, D. J., Barbas, C. F., 3rd, and Chow, S. A. (2004) Fusion proteins consisting of human immunodeficiency virus type 1 integrase and the designed polydactyl zinc finger protein E2C direct integration of viral DNA into specific sites. J. Virol. 78, 1301–1313.PubMedCrossRefGoogle Scholar
  103. 103..
    Ellis, J., and Yao, S. (2005) Retrovirus silencing and vector design: relevance to normal and cancer stem cells? Curr. Gene Ther. 5, 367–373.PubMedCrossRefGoogle Scholar
  104. 104..
    Wei, G. H., Liu, D. P., and Liang, C. C. (2005) Chromatin domain boundaries: insulators and beyond. Cell Res. 15, 292–300.PubMedCrossRefGoogle Scholar
  105. 105..
    Dalba, C., Klatzmann, D., Logg, C. R., and Kasahara, N. (2005) Beyond oncolytic virotherapy: replication-competent retrovirus vectors for selective and stable transduction of tumors. Curr. Gene Ther. 5, 655–667.PubMedCrossRefGoogle Scholar
  106. 106..
    Wang, W. J., Tai, C. K., Kasahara, N., and Chen, T. C. (2003) Highly efficient and tumor-restricted gene transfer to malignant gliomas by replication-competent retroviral vectors. Hum. Gene Ther. 14, 117–127.PubMedCrossRefGoogle Scholar
  107. 107..
    Wang, W., Tai, C. K., Kershaw, A. D., Solly, S. K., Klatzmann, D., Kasahara, N., and Chen, T. C. (2006) Use of replication-competent retroviral vectors in an immunocompetent intracranial glioma model. Neurosurg. Focus 20, E25.PubMedCrossRefGoogle Scholar
  108. 108..
    Solly, S. K., Trajcevski, S., Frisen, C., Holzer, G. W., Nelson, E., Clerc, B., Abordo-Adesida, E., Castro, M., Lowenstein, P., and Klatzmann, D. (2003) Replicative retroviral vectors for cancer gene therapy. Cancer Gene Ther. 10, 30–39.PubMedCrossRefGoogle Scholar
  109. 109..
    Hiraoka, K., Kimura, T., Logg, C. R., Tai, C. K., Haga, K., Lawson, G. W., and Kasahara, N. (2007) Therapeutic efficacy of replication-competent retrovirus vector-mediated suicide gene therapy in a multifocal colorectal cancer metastasis model. Cancer Res. 67, 5345–5353.PubMedCrossRefGoogle Scholar
  110. 110..
    Li, Z., Dullmann, J., Schiedlmeier, B., Schmidt, M., von Kalle, C., Meyer, J., Forster, M., Stocking, C., Wahlers, A., Frank, O., Ostertag, W., Kuhlcke, K., Eckert, H. G., Fehse, B., and Baum, C. (2002) Murine leukemia induced by retroviral gene marking. Science 296, 497.PubMedCrossRefGoogle Scholar
  111. 111..
    Donahue, R. E., Kessler, S. W., Bodine, D., McDonagh, K., Dunbar, C., Goodman, S., Agricola, B., Byrne, E., Raffeld, M., Moen, R., and et al. (1992) Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J. Exp. Med. 176, 1125–1135.PubMedCrossRefGoogle Scholar
  112. 112..
    Mitrophanous, K., Yoon, S., Rohll, J., Patil, D., Wilkes, F., Kim, V., Kingsman, S., Kingsman, A., and Mazarakis, N. (1999) Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther. 6, 1808–1818.PubMedCrossRefGoogle Scholar
  113. 113..
    Poeschla, E. M., Wong-Staal, F., and Looney, D. J. (1998) Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nat. Med. 4, 354–357.PubMedCrossRefGoogle Scholar
  114. 114..
    Wiznerowicz, M., and Trono, D. (2005) Harnessing HIV for therapy, basic research and biotechnology. Trends Biotechnol. 23, 42–47.PubMedCrossRefGoogle Scholar
  115. 115..
    Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., Verma, I. M., and Trono, D. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267.PubMedCrossRefGoogle Scholar
  116. 116..
    Lewis, P., Hensel, M., and Emerman, M. (1992) Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J. 11, 3053–3058.PubMedGoogle Scholar
  117. 117..
    Blomer, U., Naldini, L., Kafri, T., Trono, D., Verma, I. M., and Gage, F. H. (1997) Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J. Virol. 71, 6641–6649.PubMedGoogle Scholar
  118. 118..
    Miyoshi, H., Takahashi, M., Gage, F. H., and Verma, I. M. (1997) Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc. Natl. Acad. Sci. USA 94, 10319–10323.PubMedCrossRefGoogle Scholar
  119. 119..
    Kafri, T. (2004) Gene delivery by lentivirus vectors an overview. Methods Mol. Biol. 246, 367–390.PubMedGoogle Scholar
  120. 120..
    Mazarakis, N. D., Azzouz, M., Rohll, J. B., Ellard, F. M., Wilkes, F. J., Olsen, A. L., Carter, E. E., Barber, R. D., Baban, D. F., Kingsman, S. M., Kingsman, A. J., O'Malley, K., and Mitrophanous, K. A. (2001) Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum. Mol. Genet. 10, 2109–2121.PubMedCrossRefGoogle Scholar
  121. 121..
    Wong, L. F., Azzouz, M., Walmsley, L. E., Askham, Z., Wilkes, F. J., Mitrophanous, K. A., Kingsman, S. M., and Mazarakis, N. D. (2004) Transduction patterns of pseudotyped lentiviral vectors in the nervous system. Mol. Ther. 9, 101–111.PubMedCrossRefGoogle Scholar
  122. 122..
    Deglon, N., Tseng, J. L., Bensadoun, J. C., Zurn, A. D., Arsenijevic, Y., Pereira de Almeida, L., Zufferey, R., Trono, D., and Aebischer, P. (2000) Self-inactivating lentiviral vectors with enhanced transgene expression as potential gene transfer system in Parkinson's disease. Hum. Gene Ther. 11, 179–190.PubMedCrossRefGoogle Scholar
  123. 123..
    Han, J. J., Mhatre, A. N., Wareing, M., Pettis, R., Gao, W. Q., Zufferey, R. N., Trono, D., and Lalwani, A. K. (1999) Transgene expression in the guinea pig cochlea mediated by a lentivirus-derived gene transfer vector. Hum. Gene Ther. 10, 1867–1873.PubMedCrossRefGoogle Scholar
  124. 124..
    Miyoshi, H., Blomer, U., Takahashi, M., Gage, F. H., and Verma, I. M. (1998) Development of a self-inactivating lentivirus vector. J. Virol. 72, 8150–8157.PubMedGoogle Scholar
  125. 125..
    Pan, D., Gunther, R., Duan, W., Wendell, S., Kaemmerer, W., Kafri, T., Verma, I. M., and Whitley, C. B. (2002) Biodistribution and toxicity studies of VSVG-pseudotyped lentiviral vector after intravenous administration in mice with the observation of in vivo transduction of bone marrow. Mol. Ther. 6, 19–29.PubMedCrossRefGoogle Scholar
  126. 126..
    Vigna, E., and Naldini, L. (2000) Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy. J. Gene Med. 2, 308–316.PubMedCrossRefGoogle Scholar
  127. 127..
    Jakobsson, J., and Lundberg, C. (2006) Lentiviral vectors for use in the central nervous system. Mol. Ther. 13, 484–493.PubMedCrossRefGoogle Scholar
  128. 128..
    Dull, T., Zufferey, R., Kelly, M., Mandel, R. J., Nguyen, M., Trono, D., and Naldini, L. (1998) A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471.PubMedGoogle Scholar
  129. 129..
    Kim, V. N., Mitrophanous, K., Kingsman, S. M., and Kingsman, A. J. (1998) Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1. J. Virol. 72, 811–816.PubMedGoogle Scholar
  130. 130..
    Kotsopoulou, E., Kim, V. N., Kingsman, A. J., Kingsman, S. M., and Mitrophanous, K. A. (2000) A Rev-independent human immunodeficiency virus type 1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag-pol gene. J. Virol. 74, 4839–4852.PubMedCrossRefGoogle Scholar
  131. 131..
    Rohll, J. B., Mitrophanous, K. A., Martin-Rendon, E., Ellard, F. M., Radcliffe, P. A., Mazarakis, N. D., and Kingsman, S. M. (2002) Design, production, safety, evaluation, and clinical applications of nonprimate lentiviral vectors. Methods Enzymol. 346, 466–500.PubMedCrossRefGoogle Scholar
  132. 132..
    Sirin, O., and Park, F. (2003) Regulating gene expression using self-inactivating lentiviral vectors containing the mifepristone-inducible system. Gene 323, 67–77.PubMedCrossRefGoogle Scholar
  133. 133..
    Reiser, J., Lai, Z., Zhang, X. Y., and Brady, R. O. (2000) Development of multigene and regulated lentivirus vectors. J. Virol. 74, 10589–10599.PubMedCrossRefGoogle Scholar
  134. 134..
    Ralph, G. S., Binley, K., Wong, L. F., Azzouz, M., and Mazarakis, N. D. (2006) Gene therapy for neurodegenerative and ocular diseases using lentiviral vectors. Clin. Sci. (Lond) 110, 37–46.CrossRefGoogle Scholar
  135. 135..
    Krisky, D. M., Marconi, P. C., Oligino, T. J., Rouse, R. J., Fink, D. J., Cohen, J. B., Watkins, S. C., and Glorioso, J. C. (1998) Development of herpes simplex virus replication-defective multigene vectors for combination gene therapy applications. Gene Ther. 5, 1517–1530.PubMedCrossRefGoogle Scholar
  136. 136..
    Glorioso, J. C., and Fink, D. J. (2004) Herpes vector-mediated gene transfer in treatment of diseases of the nervous system. Annu. Rev. Microbiol. 58, 253–271.PubMedCrossRefGoogle Scholar
  137. 137..
    Latchman, D. S. (1999) Herpes simplex virus vectors for gene therapy in Parkinson's disease and other diseases of the nervous system. J. R. Soc. Med. 92, 566–570.PubMedGoogle Scholar
  138. 138..
    Kristensson, K., Lycke, E., and Sjostrand, J. (1971) Spread of herpes simplex virus in peripheral nerves. Acta Neuropathol. (Berl) 17, 44–53.CrossRefGoogle Scholar
  139. 139..
    Berges, B. K., Wolfe, J. H., and Fraser, N. W. (2007) Transduction of brain by herpes simplex virus vectors. Mol. Ther. 15, 20–29.PubMedCrossRefGoogle Scholar
  140. 140..
    Burton, E. A., and Glorioso, J. C. (2001) Multi-modal combination gene therapy for malignant glioma using replication-defective HSV vectors. Drug Discov. Today 6, 347–356.PubMedCrossRefGoogle Scholar
  141. 141..
    Yenari, M. A., Fink, S. L., Sun, G. H., Chang, L. K., Patel, M. K., Kunis, D. M., Onley, D., Ho, D. Y., Sapolsky, R. M., and Steinberg, G. K. (1998) Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy. Ann. Neurol.44, 584–591.PubMedCrossRefGoogle Scholar
  142. 142..
    Yamada, M., Oligino, T., Mata, M., Goss, J. R., Glorioso, J. C., and Fink, D. J. (1999) Herpes simplex virus vector-mediated expression of Bcl-2 prevents 6-hydroxydopamine-induced degeneration of neurons in the substantia nigra in vivo. Proc. Natl. Acad. Sci. USA 96, 4078–4083.PubMedCrossRefGoogle Scholar
  143. 143..
    Martino, G., Poliani, P. L., Furlan, R., Marconi, P., Glorioso, J. C., Adorini, L., and Comi, G. (2000) Cytokine therapy in immune-mediated demyelinating diseases of the central nervous system: a novel gene therapy approach. J. Neuroimmunol. 107, 184–190.PubMedCrossRefGoogle Scholar
  144. 144..
    Sun, M., Kong, L., Wang, X., Holmes, C., Gao, Q., Zhang, G. R., Pfeilschifter, J., Goldstein, D. S., and Geller, A. I. (2004) Coexpression of tyrosine hydroxylase, GTP cyclohydrolase I, aromatic amino acid decarboxylase, and vesicular monoamine transporter 2 from a helper virus-free herpes simplex virus type 1 vector supports high-level, long-term biochemical and behavioral correction of a rat model of Parkinson's disease. Hum. Gene Ther. 15, 1177–1196.PubMedCrossRefGoogle Scholar
  145. 145..
    Samaniego, L. A., Neiderhiser, L., and DeLuca, N. A. (1998) Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J. Virol. 72, 3307–3320.PubMedGoogle Scholar
  146. 146..
    Bell, J. C., Lichty, B., and Stojdl, D. (2003) Getting oncolytic virus therapies off the ground. Cancer Cell 4, 7–11.PubMedCrossRefGoogle Scholar
  147. 147..
    Kesari, S., Randazzo, B. P., Valyi-Nagy, T., Huang, Q. S., Brown, S. M., MacLean, A. R., Lee, V. M., Trojanowski, J. Q., and Fraser, N. W. (1995) Therapy of experimental human brain tumors using a neuroattenuated herpes simplex virus mutant. Lab. Invest. 73, 636–648.PubMedGoogle Scholar
  148. 148..
    Yoon, S. S., Nakamura, H., Carroll, N. M., Bode, B. P., Chiocca, E. A., and Tanabe, K. K. (2000) An oncolytic herpes simplex virus type 1 selectively destroys diffuse liver metastases from colon carcinoma. FASEB J. 14, 301–311.PubMedGoogle Scholar
  149. 149..
    Varghese, S., and Rabkin, S. D. (2002) Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther. 9, 967–978.PubMedCrossRefGoogle Scholar
  150. 150..
    Markert, J. M., Medlock, M. D., Rabkin, S. D., Gillespie, G. Y., Todo, T., Hunter, W. D., Palmer, C. A., Feigenbaum, F., Tornatore, C., Tufaro, F., and Martuza, R. L. (2000) Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther. 7, 867–874.PubMedCrossRefGoogle Scholar
  151. 151..
    Rampling, R., Cruickshank, G., Papanastassiou, V., Nicoll, J., Hadley, D., Brennan, D., Petty, R., MacLean, A., Harland, J., McKie, E., Mabbs, R., and Brown, M. (2000) Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther. 7, 859–866.PubMedCrossRefGoogle Scholar
  152. 152..
    Papanastassiou, V., Rampling, R., Fraser, M., Petty, R., Hadley, D., Nicoll, J., Harland, J., Mabbs, R., and Brown, M. (2002) The potential for efficacy of the modified (ICP 34.5(-)) herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: a proof of principle study. Gene Ther. 9, 398–406.PubMedCrossRefGoogle Scholar
  153. 153..
    MacKie, R. M., Stewart, B., and Brown, S. M. (2001) Intralesional injection of herpes simplex virus 1716 in metastatic melanoma. Lancet 357, 525–526.PubMedCrossRefGoogle Scholar
  154. 154..
    Liddington, R. C., Yan, Y., Moulai, J., Sahli, R., Benjamin, T. L., and Harrison, S. C. (1991) Structure of simian virus 40 at 3.8-A resolution. Nature 354, 278–284.PubMedCrossRefGoogle Scholar
  155. 155..
    Nakanishi, A., Nakamura, A., Liddington, R., and Kasamatsu, H. (2006) Identification of amino acid residues within simian virus 40 capsid proteins Vp1, Vp2, and Vp3 that are required for their interaction and for viral infection. J. Virol. 80, 8891–8898.PubMedCrossRefGoogle Scholar
  156. 156..
    Kimchi-Sarfaty, C., and Gottesman, M. M. (2006) SV40 In vitro packaging: a psuedovirion gene delivery system. In: Friedman, T. and Rossi, J., eds. Gene Transfer. Woodbury, NY: Cold Spring Harbor Laboratory Press, 289–296.Google Scholar
  157. 157..
    Marple, A. H., Gottesman, M. M., and Kimchi-Sarfaty, C. (2007) Efficient gene therapy delivery by SV40-derived vectors. In: Hefferon, K., ed. Virus Expression Vectors. Woodbury, Trivandrum, India: Transworld Research Network.Google Scholar
  158. 158..
    Strayer, D. S. (1999) Gene therapy using SV40-derived vectors: what does the future hold? J. Cell Physiol. 181, 375–384.PubMedCrossRefGoogle Scholar
  159. 159..
    Kimchi-Sarfaty, C., Garfield, S., Nathan, A. S., Saadia, A., Carlos, C., Dhanalakshmi, C., and Gottesman, M. M. (2004) The pathway of uptake of SV40 pseudovirions packaged in vitro: from MHC class I receptors to the nucleus. Ther. Mol. Biol. 8, 439–450.Google Scholar
  160. 160..
    Rund, D., Dagan, M., Dalyot-Herman, N., Kimchi-Sarfaty, C., Schoenlein, P. V., Gottesman, M. M., and Oppenheim, A. (1998) Efficient transduction of human hematopoietic cells with the human multidrug resistance gene 1 via SV40 pseudovirions. Hum. Gene Ther. 9, 649–657.PubMedCrossRefGoogle Scholar
  161. 161..
    Kimchi-Sarfaty, C., Vieira, W. D., Dodds, D., Sherman, A., Kreitman, R. J., Shinar, S., and Gottesman, M. M. (2006) SV40 Pseudovirion gene delivery of a toxin to treat human adenocarcinomas in mice. Cancer Gene Ther. 13, 648–657.PubMedCrossRefGoogle Scholar
  162. 162..
    Kodama, K., Katayama, Y., Shoji, Y., and Nakashima, H. (2006) The features and shortcomings for gene delivery of current non-viral carriers. Curr. Med. Chem. 13, 2155–2161.PubMedCrossRefGoogle Scholar
  163. 163..
    Park, T. G., Jeong, J. H., and Kim, S. W. (2006) Current status of polymeric gene delivery systems. Adv. Drug Deliv. Rev. 58, 467–486.PubMedCrossRefGoogle Scholar
  164. 164..
    Gardlik, R., Palffy, R., Hodosy, J., Lukacs, J., Turna, J., and Celec, P. (2005) Vectors and delivery systems in gene therapy. Med. Sci. Monit. 11, RA110–121.PubMedGoogle Scholar
  165. 165..
    Smith, B. F., Baker, H. J., Curiel, D. T., Jiang, W., and Conry, R. M. (1998) Humoral and cellular immune responses of dogs immunized with a nucleic acid vaccine encoding human carcinoembryonic antigen. Gene Ther. 5, 865–868.PubMedCrossRefGoogle Scholar
  166. 166..
    Velaz-Faircloth, M., Cobb, A. J., Horstman, A. L., Henry, S. C., and Frothingham, R. (1999) Protection against Mycobacterium avium by DNA vaccines expressing mycobacterial antigens as fusion proteins with green fluorescent protein. Infect. Immun. 67, 4243–4250.PubMedGoogle Scholar
  167. 167..
    Yu, W. H., Kashani-Sabet, M., Liggitt, D., Moore, D., Heath, T. D., and Debs, R. J. (1999) Topical gene delivery to murine skin. J. Invest. Dermatol. 112, 370–375.PubMedCrossRefGoogle Scholar
  168. 168..
    Zhang, G., Vargo, D., Budker, V., Armstrong, N., Knechtle, S., and Wolff, J. A. (1997) Expression of naked plasmid DNA injected into the afferent and efferent vessels of rodent and dog livers. Hum. Gene Ther. 8, 1763–1772.PubMedCrossRefGoogle Scholar
  169. 169..
    Yang, J. P., and Huang, L. (1996) Direct gene transfer to mouse melanoma by intratumor injection of free DNA. Gene Ther. 3, 542–548.PubMedGoogle Scholar
  170. 170..
    Tupin, E., Poirier, B., Bureau, M. F., Khallou-Laschet, J., Vranckx, R., Caligiuri, G., Gaston, A. T., Duong Van Huyen, J. P., Scherman, D., Bariety, J., Michel, J. B., and Nicoletti, A. (2003) Non-viral gene transfer of murine spleen cells achieved by in vivo electroporation. Gene Ther. 10, 569–579.PubMedCrossRefGoogle Scholar
  171. 171..
    Gronevik, E., Mathiesen, I., and Lomo, T. (2005) Early events of electroporation-mediated intramuscular DNA vaccination potentiate Th1-directed immune responses. J. Gene Med. 7, 1246–1254.PubMedCrossRefGoogle Scholar
  172. 172..
    Dileo, J., Miller, T. E., Jr., Chesnoy, S., and Huang, L. (2003) Gene transfer to subdermal tissues via a new gene gun design. Hum. Gene Ther. 14, 79–87.PubMedCrossRefGoogle Scholar
  173. 173..
    Matsuno, Y., Iwata, H., Umeda, Y., Takagi, H., Mori, Y., Miyazaki, J., Kosugi, A., and Hirose, H. (2003) Nonviral gene gun mediated transfer into the beating heart. ASAIO J. 49, 641–644.PubMedCrossRefGoogle Scholar
  174. 174..
    Yoshizawa, J., Li, X. K., Fujino, M., Kimura, H., Mizuno, R., Hara, A., Ashizuka, S., Kanai, M., Kuwashima, N., Kurobe, M., and Yamazaki, Y. (2004) Successful in utero gene transfer using a gene gun in midgestational mouse fetuses. J. Pediatr. Surg. 39, 81–84.PubMedCrossRefGoogle Scholar
  175. 175..
    Kodama, T., Tan, P. H., Offiah, I., Partridge, T., Cook, T., George, A. J., and Blomley, M. J. (2005) Delivery of oligodeoxynucleotides into human saphenous veins and the adjunct effect of ultrasound and microbubbles. Ultrasound Med. Biol. 31, 1683–1691.PubMedCrossRefGoogle Scholar
  176. 176..
    Haag, P., Frauscher, F., Gradl, J., Seitz, A., Schafer, G., Lindner, J. R., Klibanov, A. L., Bartsch, G., Klocker, H., and Eder, I. E. (2006) Microbubble-enhanced ultrasound to deliver an antisense oligodeoxynucleotide targeting the human androgen receptor into prostate tumours. J. Steroid Biochem. Mol. Biol. 102, 103–113.PubMedCrossRefGoogle Scholar
  177. 177..
    Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., Northrop, J. P., Ringold, G. M., and Danielsen, M. (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84, 7413–7417.PubMedCrossRefGoogle Scholar
  178. 178..
    Dass, C. R. (2002) Biochemical and biophysical characteristics of lipoplexes pertinent to solid tumour gene therapy. Int. J. Pharm. 241, 1–25.PubMedCrossRefGoogle Scholar
  179. 179..
    Zhdanov, R. I., Podobed, O. V., and Vlassov, V. V. (2002) Cationic lipid-DNA complexes-lipoplexes-for gene transfer and therapy. Bioelectrochemistry 58, 53–64.PubMedCrossRefGoogle Scholar
  180. 180..
    Farhood, H., Serbina, N., and Huang, L. (1995) The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim. Biophys. Acta 1235, 289–295.PubMedCrossRefGoogle Scholar
  181. 181..
    Hong, K., Zheng, W., Baker, A., and Papahadjopoulos, D. (1997) Stabilization of cationic liposome-plasmid DNA complexes by polyamines and poly(ethylene glycol)-phospholipid conjugates for efficient in vivo gene delivery. FEBS Lett. 400, 233–237.PubMedCrossRefGoogle Scholar
  182. 182..
    Semple, S. C., Chonn, A., and Cullis, P. R. (1996) Influence of cholesterol on the association of plasma proteins with liposomes. Biochemistry 35, 2521–2525.PubMedCrossRefGoogle Scholar
  183. 183..
    Hattori, Y., Kawakami, S., Nakamura, K., Yamashita, F., and Hashida, M. (2006) Efficient gene transfer into macrophages and dendritic cells by in vivo gene delivery with mannosylated lipoplex via the intraperitoneal route. J. Pharmacol. Exp. Ther. 318, 828–834.PubMedCrossRefGoogle Scholar
  184. 184..
    Hattori, Y., Suzuki, S., Kawakami, S., Yamashita, F., and Hashida, M. (2005) The role of dioleoylphosphatidylethanolamine (DOPE) in targeted gene delivery with mannosylated cationic liposomes via intravenous route. J. Control. Release 108, 484–495.PubMedCrossRefGoogle Scholar
  185. 185..
    Kawakami, S., Harada, A., Sakanaka, K., Nishida, K., Nakamura, J., Sakaeda, T., Ichikawa, N., Nakashima, M., and Sasaki, H. (2004) In vivo gene transfection via intravitreal injection of cationic liposome/plasmid DNA complexes in rabbits. Int. J. Pharm. 278, 255–262.PubMedCrossRefGoogle Scholar
  186. 186..
    Monck, M. A., Mori, A., Lee, D., Tam, P., Wheeler, J. J., Cullis, P. R., and Scherrer, P. (2000) Stabilized plasmid-lipid particles: pharmacokinetics and plasmid delivery to distal tumors following intravenous injection. J. Drug. Target. 7, 439–452.PubMedCrossRefGoogle Scholar
  187. 187..
    Ishiwata, H., Suzuki, N., Ando, S., Kikuchi, H., and Kitagawa, T. (2000) Characteristics and biodistribution of cationic liposomes and their DNA complexes. J. Control. Rel. 69, 139–148.CrossRefGoogle Scholar
  188. 188..
    Anwer, K., Kao, G., Proctor, B., Anscombe, I., Florack, V., Earls, R., Wilson, E., McCreery, T., Unger, E., Rolland, A., and Sullivan, S. M. (2000) Ultrasound enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic administration. Gene Ther. 7, 1833–1839.PubMedCrossRefGoogle Scholar
  189. 189..
    Anwer, K., Kao, G., Proctor, B., Rolland, A., and Sullivan, S. (2000) Optimization of cationic lipid/DNA complexes for systemic gene transfer to tumor lesions. J. Drug Target. 8, 125–135.PubMedCrossRefGoogle Scholar
  190. 190..
    Wu, C. H., Wilson, J. M., and Wu, G. Y. (1989) Targeting genes: delivery and persistent expression of a foreign gene driven by mammalian regulatory elements in vivo. J. Biol. Chem. 264, 16985–16987.PubMedGoogle Scholar
  191. 191..
    Wagner, E., Ogris, M., and Zauner, W. (1998) Polylysine-based transfection systems utilizing receptor-mediated delivery. Adv. Drug. Deliv. Rev. 30, 97–113.PubMedCrossRefGoogle Scholar
  192. 192..
    Schaffer, D. V., and Lauffenburger, D. A. (1998) Optimization of cell surface binding enhances efficiency and specificity of molecular conjugate gene delivery. J. Biol. Chem. 273, 28004–28009.PubMedCrossRefGoogle Scholar
  193. 193..
    Forrest, M. L., and Pack, D. W. (2002) On the kinetics of polyplex endocytic trafficking: implications for gene delivery vector design. Mol. Ther. 6, 57–66.PubMedCrossRefGoogle Scholar
  194. 194..
    Pouton, C. W., Lucas, P., Thomas, B. J., Uduehi, A. N., Milroy, D. A., and Moss, S. H. (1998) Polycation-DNA complexes for gene delivery: a comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids. J. Control Rel. 53, 289–299.CrossRefGoogle Scholar
  195. 195..
    Kircheis, R., Kichler, A., Wallner, G., Kursa, M., Ogris, M., Felzmann, T., Buchberger, M., and Wagner, E. (1997) Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery. Gene Ther. 4, 409–418.PubMedCrossRefGoogle Scholar
  196. 196..
    Dash, P. R., Read, M. L., Barrett, L. B., Wolfert, M. A., and Seymour, L. W. (1999) Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery. Gene Ther. 6, 643–650.PubMedCrossRefGoogle Scholar
  197. 197..
    Nguyen, H. K., Lemieux, P., Vinogradov, S. V., Gebhart, C. L., Guerin, N., Paradis, G., Bronich, T. K., Alakhov, V. Y., and Kabanov, A. V. (2000) Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents. Gene Ther. 7, 126–138.PubMedCrossRefGoogle Scholar
  198. 198..
    Hudde, T., Rayner, S. A., Comer, R. M., Weber, M., Isaacs, J. D., Waldmann, H., Larkin, D. F., and George, A. J. (1999) Activated polyamidoamine dendrimers, a non-viral vector for gene transfer to the corneal endothelium. Gene Ther. 6, 939–943.PubMedCrossRefGoogle Scholar
  199. 199..
    Dennig, J., and Duncan, E. (2002) Gene transfer into eukaryotic cells using activated polyamidoamine dendrimers. J. Biotechnol. 90, 339–347.PubMedGoogle Scholar
  200. 200..
    Truong-Le, V. L., August, J. T., and Leong, K. W. (1998) Controlled gene delivery by DNA-gelatin nanospheres. Hum. Gene Ther. 9, 1709–1717.PubMedCrossRefGoogle Scholar
  201. 201..
    van de Wetering, P., Moret, E. E., Schuurmans-Nieuwenbroek, N. M., van Steenbergen, M. J., and Hennink, W. E. (1999) Structure-activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery. Bioconjug. Chem. 10, 589–597.PubMedCrossRefGoogle Scholar
  202. 202..
    van der Woude, I., Wagenaar, A., Meekel, A. A., ter Beest, M. B., Ruiters, M. H., Engberts, J. B., and Hoekstra, D. (1997) Novel pyridinium surfactants for efficient, nontoxic in vitro gene delivery. Proc. Natl. Acad. Sci. USA 94, 1160–1165.PubMedCrossRefGoogle Scholar
  203. 203..
    Mansouri, S., Lavigne, P., Corsi, K., Benderdour, M., Beaumont, E., and Fernandes, J. C. (2004) Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur. J. Pharm. Biopharm. 57, 1–8.PubMedCrossRefGoogle Scholar
  204. 204..
    Chen, J., Yang, W. L., Li, G., Qian, J., Xue, J. L., Fu, S. K., and Lu, D. R. (2004) Transfection of mEpo gene to intestinal epithelium in vivo mediated by oral delivery of chitosan-DNA nanoparticles. World J. Gastroenterol. 10, 112–116.PubMedGoogle Scholar
  205. 205..
    Roy, K., Mao, H. Q., Huang, S. K., and Leong, K. W. (1999) Oral gene delivery with chitosan – DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat. Med. 5, 387–391.PubMedCrossRefGoogle Scholar
  206. 206..
    Gomez-Sebastian, S., Gimenez-Cassina, A., Diaz-Nido, J., Lim, F., and Wade-Martins, R. (2007) Infectious delivery and expression of a 135 kb human FRDA genomic DNA locus complements Friedreich's ataxia deficiency in human cells. Mol. Ther. 15, 248–254.PubMedCrossRefGoogle Scholar
  207. 207..
    Hibbitt, O. C., Harbottle, R. P., Waddington, S. N., Bursill, C. A., Coutelle, C., Channon, K. M., and Wade-Martins, R. (2007) Delivery and long-term expression of a 135 kb LDLR genomic DNA locus in vivo by hydrodynamic tail vein injection. J. Gene Med. 9, 488–497.PubMedCrossRefGoogle Scholar
  208. 208..
    Kanzaki, S., Beyer, L., Karolyi, I. J., Dolan, D. F., Fang, Q., Probst, F. J., Camper, S. A., and Raphael, Y. (2006) Transgene correction maintains normal cochlear structure and function in 6-month-old Myo15a mutant mice. Hear. Res. 214, 37–44.PubMedCrossRefGoogle Scholar
  209. 209..
    Lim, F., Palomo, G. M., Mauritz, C., Gimenez-Cassina, A., Illana, B., Wandosell, F., and Diaz-Nido, J. (2007) Functional recovery in a Friedreich's ataxia mouse model by frataxin gene transfer using an HSV-1 amplicon vector. Mol. Ther. 15, 1072–1078.PubMedGoogle Scholar
  210. 210..
    Suda, T., Katoh, M., Hiratsuka, M., Takiguchi, M., Kazuki, Y., Inoue, T., and Oshimura, M. (2006) Heat-regulated production and secretion of insulin from a human artificial chromosome vector. Biochem. Biophys. Res. Commun. 340, 1053–1061.PubMedCrossRefGoogle Scholar
  211. 211..
    Paglia, P., Medina, E., Arioli, I., Guzman, C. A., and Colombo, M. P. (1998) Gene transfer in dendritic cells, induced by oral DNA vaccination with Salmonella typhimurium, results in protective immunity against a murine fibrosarcoma. Blood 92, 3172–3176.PubMedGoogle Scholar
  212. 212..
    Sizemore, D. R., Branstrom, A. A., and Sadoff, J. C. (1995) Attenuated Shigella as a DNA delivery vehicle for DNA-mediated immunization. Science 270, 299–302.PubMedCrossRefGoogle Scholar
  213. 213..
    Vassaux, G., Nitcheu, J., Jezzard, S., and Lemoine, N. R. (2006) Bacterial gene therapy strategies. J. Pathol. 208, 290–298.PubMedCrossRefGoogle Scholar
  214. 214..
    Palffy, R., Gardlik, R., Hodosy, J., Behuliak, M., Resko, P., Radvansky, J., and Celec, P. (2006) Bacteria in gene therapy: bactofection versus alternative gene therapy. Gene Ther. 13, 101–105.PubMedCrossRefGoogle Scholar
  215. 215..
    Al-Mariri, A., Tibor, A., Lestrate, P., Mertens, P., De Bolle, X., and Letesson, J. J. (2002) Yersinia enterocolitica as a vehicle for a naked DNA vaccine encoding Brucella abortus bacterioferritin or P39 antigen. Infect. Immun. 70, 1915–1923.PubMedCrossRefGoogle Scholar
  216. 216..
    Woo, P. C., Wong, L. P., Zheng, B. J., and Yuen, K. Y. (2001) Unique immunogenicity of hepatitis B virus DNA vaccine presented by live-attenuated Salmonella typhimurium. Vaccine 19, 2945–2954.PubMedCrossRefGoogle Scholar
  217. 217..
    Flo, J., Tisminetzky, S., and Baralle, F. (2001) Oral transgene vaccination mediated by attenuated Salmonellae is an effective method to prevent Herpes simplex virus-2 induced disease in mice. Vaccine 19, 1772–1782.PubMedCrossRefGoogle Scholar
  218. 218..
    Niethammer, A. G., Xiang, R., Becker, J. C., Wodrich, H., Pertl, U., Karsten, G., Eliceiri, B. P., and Reisfeld, R. A. (2002) A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat. Med. 8, 1369–1375.PubMedCrossRefGoogle Scholar
  219. 219..
    Feng, K. K., Zhao, H. Y., Qiu, H., Liu, J. X., and Chen, J. (2005) Combined therapy with flk1-based DNA vaccine and interleukin-12 results in enhanced antiangiogenic and antitumor effects. Cancer Lett. 221, 41–47.PubMedCrossRefGoogle Scholar
  220. 220..
    Theys, J., Landuyt, A. W., Nuyts, S., Van Mellaert, L., Lambin, P., and Anne, J. (2001) Clostridium as a tumor-specific delivery system of therapeutic proteins. Cancer Detect. Prev. 25, 548–557.PubMedGoogle Scholar
  221. 221..
    Fujimori, M., Amano, J., and Taniguchi, S. (2002) The genus Bifidobacterium for cancer gene therapy. Curr. Opin. Drug Discov. Dev. 5, 200–203.Google Scholar
  222. 222..
    Luo, X., Li, Z., Lin, S., Le, T., Ittensohn, M., Bermudes, D., Runyab, J. D., Shen, S. Y., Chen, J., King, I. C., and Zheng, L. M. (2001) Antitumor effect of VNP20009, an attenuated Salmonella, in murine tumor models. Oncol. Res. 12, 501–508.PubMedGoogle Scholar
  223. 223..
    Nemunaitis, J., Cunningham, C., Senzer, N., Kuhn, J., Cramm, J., Litz, C., Cavagnolo, R., Cahill, A., Clairmont, C., and Sznol, M. (2003) Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther. 10, 737–744.PubMedCrossRefGoogle Scholar
  224. 224..
    Nuyts, S., Van Mellaert, L., Theys, J., Landuyt, W., Lambin, P., and Anne, J. (2001) The use of radiation-induced bacterial promoters in anaerobic conditions: a means to control gene expression in clostridium-mediated therapy for cancer. Radiat. Res. 155, 716–723.PubMedCrossRefGoogle Scholar
  225. 225..
    Kumar, S., Walia, V., Ray, M., and Elble, R. C. (2007) p53 in breast cancer: mutation and countermeasures. Front Biosci. 12, 4168–4178.PubMedCrossRefGoogle Scholar
  226. 226..
    Cai, D. W., Mukhopadhyay, T., Liu, Y., Fujiwara, T., and Roth, J. A. (1993) Stable expression of the wild-type p53 gene in human lung cancer cells after retrovirus-mediated gene transfer. Hum. Gene Ther. 4, 617–624.PubMedCrossRefGoogle Scholar
  227. 227..
    Watts, G. S., Oshiro, M. M., Junk, D. J., Wozniak, R. J., Watterson, S., Domann, F. E., and Futscher, B. W. (2004) The acetyltransferase p300/CBP-associated factor is a p53 target gene in breast tumor cells. Neoplasia 6, 187–194.PubMedCrossRefGoogle Scholar
  228. 228..
    Eastham, J. A., Grafton, W., Martin, C. M., and Williams, B. J. (2000) Suppression of primary tumor growth and the progression to metastasis with p53 adenovirus in human prostate cancer. J. Urol. 164, 814–819.PubMedCrossRefGoogle Scholar
  229. 229..
    Giuliano, M., Catalano, A., Strizzi, L., Vianale, G., Capogrossi, M., and Procopio, A. (2000) Adenovirus-mediated wild-type p53 overexpression reverts tumourigenicity of human mesothelioma cells. Int. J. Mol. Med. 5, 591–596.PubMedGoogle Scholar
  230. 230..
    Su, S., Watanabe, A., Yamamoto, M., Nakajima, E., Miyake, K., and Shimada, T. (2006) Mutations in p53 cDNA sequence introduced by retroviral vector. Biochem. Biophys. Res. Commun. 340, 567–572.PubMedCrossRefGoogle Scholar
  231. 231..
    Guo, J., and Xin, H. (2006) Chinese gene therapy. Splicing out the West? Science 314, 1232–1235.PubMedCrossRefGoogle Scholar
  232. 232..
    Gabrilovich, D. I. (2006) INGN 201 (Advexin): adenoviral p53 gene therapy for cancer. Expert Opin. Biol. Ther. 6, 823–832.PubMedCrossRefGoogle Scholar
  233. 233..
    Pisters, L. L., Pettaway, C. A., Troncoso, P., McDonnell, T. J., Stephens, L. C., Wood, C. G., Do, K. A., Brisbay, S. M., Wang, X., Hossan, E. A., Evans, R. B., Soto, C., Jacobson, M. G., Parker, K., Merritt, J. A., Steiner, M. S., and Logothetis, C. J. (2004) Evidence that transfer of functional p53 protein results in increased apoptosis in prostate cancer. Clin. Cancer Res. 10, 2587–2593.PubMedCrossRefGoogle Scholar
  234. 234..
    Swisher, S. G., Roth, J. A., Komaki, R., Gu, J., Lee, J. J., Hicks, M., Ro, J. Y., Hong, W. K., Merritt, J. A., Ahrar, K., Atkinson, N. E., Correa, A. M., Dolormente, M., Dreiling, L., El-Naggar, A. K., Fossella, F., Francisco, R., Glisson, B., Grammer, S., Herbst, R., Huaringa, A., Kemp, B., Khuri, F. R., Kurie, J. M., Liao, Z., McDonnell, T. J., Morice, R., Morello, F., Munden, R., Papadimitrakopoulou, V., Pisters, K. M., Putnam, J. B., Jr., Sarabia, A. J., Shelton, T., Stevens, C., Shin, D. M., Smythe, W. R., Vaporciyan, A. A., Walsh, G. L., and Yin, M. (2003) Induction of p53-regulated genes and tumor regression in lung cancer patients after intratumoral delivery of adenoviral p53 (INGN 201) and radiation therapy. Clin. Cancer Res. 9, 93–101.PubMedGoogle Scholar
  235. 235..
    Lockley, M., Fernandez, M., Wang, Y., Li, N. F., Conroy, S., Lemoine, N., and McNeish, I. (2006) Activity of the adenoviral E1A deletion mutant dl922–947 in ovarian cancer: comparison with E1A wild-type viruses, bioluminescence monitoring, and intraperitoneal delivery in icodextrin. Cancer Res. 66, 989–998.PubMedCrossRefGoogle Scholar
  236. 236..
    Zabarovsky, E. R., Lerman, M. I., and Minna, J. D. (2002) Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene 21, 6915–6935.PubMedCrossRefGoogle Scholar
  237. 237..
    Ji, L., Nishizaki, M., Gao, B., Burbee, D., Kondo, M., Kamibayashi, C., Xu, K., Yen, N., Atkinson, E. N., Fang, B., Lerman, M. I., Roth, J. A., and Minna, J. D. (2002) Expression of several genes in the human chromosome 3p21.3 homozygous deletion region by an adenovirus vector results in tumor suppressor activities in vitro and in vivo. Cancer Res. 62, 2715–2720.PubMedGoogle Scholar
  238. 238..
    Deng, W. G., Nishizaki, M., Fang, B., Roth, J. A., and Ji, L. (2007) Induction of apoptosis by tumor suppressor FHIT via death receptor signaling pathway in human lung cancer cells. Biochem. Biophys. Res. Commun. 355, 993–999.PubMedCrossRefGoogle Scholar
  239. 239..
    Guo, W., Zhu, H., Zhang, L., Davis, J., Teraishi, F., Roth, J. A., Stephens, C., Fueyo, J., Jiang, H., Conrad, C., and Fang, B. (2006) Combination effect of oncolytic adenovirotherapy and TRAIL gene therapy in syngeneic murine breast cancer models. Cancer Gene Ther. 13, 82–90.PubMedCrossRefGoogle Scholar
  240. 240..
    Fillat, C., Carrio, M., Cascante, A., and Sangro, B. (2003) Suicide gene therapy mediated by the Herpes Simplex virus thymidine kinase gene/Ganciclovir system: fifteen years of application. Curr. Gene Ther. 3, 13–26.PubMedCrossRefGoogle Scholar
  241. 241..
    Negroni, L., Samson, M., Guigonis, J. M., Rossi, B., Pierrefite-Carle, V., and Baudoin, C. (2007) Treatment of colon cancer cells using the cytosine deaminase/5-fluorocytosine suicide system induces apoptosis, modulation of the proteome, and Hsp90beta phosphorylation. Mol. Cancer Ther. 6, 2747–2756.PubMedCrossRefGoogle Scholar
  242. 242..
    Braybrooke, J. P., Slade, A., Deplanque, G., Harrop, R., Madhusudan, S., Forster, M. D., Gibson, R., Makris, A., Talbot, D. C., Steiner, J., White, L., Kan, O., Naylor, S., Carroll, M. W., Kingsman, S. M., and Harris, A. L. (2005) Phase I study of MetXia-P450 gene therapy and oral cyclophosphamide for patients with advanced breast cancer or melanoma. Clin. Cancer Res. 11, 1512–1520.PubMedCrossRefGoogle Scholar
  243. 243..
    Dachs, G. U., Tupper, J., and Tozer, G. M. (2005) From bench to bedside for gene-directed enzyme prodrug therapy of cancer. Anticancer Drugs 16, 349–359.PubMedCrossRefGoogle Scholar
  244. 244..
    Mathis, J. M., Williams, B. J., Sibley, D. A., Carroll, J. L., Li, J., Odaka, Y., Barlow, S., Nathan, C. O., Li, B. D., and DeBenedetti, A. (2006) Cancer-specific targeting of an adenovirus-delivered herpes simplex virus thymidine kinase suicide gene using translational control. J. Gene Med. 8, 1105–1120.PubMedCrossRefGoogle Scholar
  245. 245..
    Kagaya, T., Nakamoto, Y., Sakai, Y., Tsuchiyama, T., Yagita, H., Mukaida, N., and Kaneko, S. (2006) Monocyte chemoattractant protein-1 gene delivery enhances antitumor effects of herpes simplex virus thymidine kinase/ganciclovir system in a model of colon cancer. Cancer Gene Ther. 13, 357–366.PubMedCrossRefGoogle Scholar
  246. 246..
    Zhan, J., Gao, Y., Wang, W., Shen, A., Aspelund, A., Young, M., Laquerre, S., Post, L., and Shen, Y. (2005) Tumor-specific intravenous gene delivery using oncolytic adenoviruses. Cancer Gene Ther. 12, 19–25.PubMedCrossRefGoogle Scholar
  247. 247..
    Liu, Y., and Deisseroth, A. (2006) Oncolytic adenoviral vector carrying the cytosine deaminase gene for melanoma gene therapy. Cancer Gene Ther. 13, 845–855.PubMedCrossRefGoogle Scholar
  248. 248..
    Wang, J., Lu, X. X., Chen, D. Z., Li, S. F., and Zhang, L. S. (2004) Herpes simplex virus thymidine kinase and ganciclovir suicide gene therapy for human pancreatic cancer. World J. Gastroenterol. 10, 400–403.PubMedGoogle Scholar
  249. 249..
    Fogar, P., Greco, E., Basso, D., Habeler, W., Navaglia, F., Zambon, C. F., Tormen, D., Gallo, N., Cecchetto, A., Plebani, M., and Pedrazzoli, S. (2003) Suicide gene therapy with HSV-TK in pancreatic cancer has no effect in vivo in a mouse model. Eur. J. Surg. Oncol. 29, 721–730.PubMedGoogle Scholar
  250. 250..
    Shand, N., Weber, F., Mariani, L., Bernstein, M., Gianella-Borradori, A., Long, Z., Sorensen, A. G., and Barbier, N. (1999) A phase 1–2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European-Canadian Study Group. Hum. Gene Ther. 10, 2325–2335.PubMedCrossRefGoogle Scholar
  251. 251..
    Rainov, N. G. (2000) A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum. Gene Ther. 11, 2389–2401.PubMedCrossRefGoogle Scholar
  252. 252..
    Kikuchi, E., Menendez, S., Ozu, C., Ohori, M., Cordon-Cardo, C., Logg, C. R., Kasahara, N., and Bochner, B. H. (2007) Delivery of replication-competent retrovirus expressing Escherichia coli purine nucleoside phosphorylase increases the metabolism of the prodrug, fludarabine phosphate and suppresses the growth of bladder tumor xenografts. Cancer Gene Ther. 14, 279–286.PubMedCrossRefGoogle Scholar
  253. 253..
    Stover, M. L., Wang, C. K., McKinstry, M. B., Kalajzic, I., Gronowicz, G., Clark, S. H., Rowe, D. W., and Lichtler, A. C. (2001) Bone-directed expression of Col1a1 promoter-driven self-inactivating retroviral vector in bone marrow cells and transgenic mice. Mol. Ther. 3, 543–550.PubMedCrossRefGoogle Scholar
  254. 254..
    Vile, R. G., Diaz, R. M., Miller, N., Mitchell, S., Tuszyanski, A., and Russell, S. J. (1995) Tissue-specific gene expression from Mo-MLV retroviral vectors with hybrid LTRs containing the murine tyrosinase enhancer/promoter. Virology 214, 307–313.PubMedCrossRefGoogle Scholar
  255. 255..
    Engels, B., Cam, H., Schuler, T., Indraccolo, S., Gladow, M., Baum, C., Blankenstein, T., and Uckert, W. (2003) Retroviral vectors for high-level transgene expression in T lymphocytes. Hum. Gene Ther. 14, 1155–1168.PubMedCrossRefGoogle Scholar
  256. 256..
    Wang, J. M., Hou, J., Qiu, X. F., Kurachi, K., and Xue, J. L. (2004) Hybrid retroviral vector with MCK enhancers inserted in LTR for stable and specific expression of human factor IX in skeletal muscle. Chin. Med. J. (Engl) 117, 893–898.Google Scholar
  257. 257..
    Woo, Y., Adusumilli, P. S., and Fong, Y. (2006) Advances in oncolytic viral therapy. Curr. Opin. Investig. Drugs 7, 549–559.PubMedGoogle Scholar
  258. 258..
    Crompton, A. M., and Kirn, D. H. (2007) From ONYX-015 to armed vaccinia viruses: the education and evolution of oncolytic virus development. Curr. Cancer Drug Targets 7, 133–139.PubMedCrossRefGoogle Scholar
  259. 259..
    Barzon, L., Zanusso, M., Colombo, F., and Palu, G. (2006) Clinical trials of gene therapy, virotherapy, and immunotherapy for malignant gliomas. Cancer Gene Ther. 13, 539–554.PubMedCrossRefGoogle Scholar
  260. 260..
    Hotte, S. J., Lorence, R. M., Hirte, H. W., Polawski, S. R., Bamat, M. K., O'Neil, J. D., Roberts, M. S., Groene, W. S., and Major, P. P. (2007) An optimized clinical regimen for the oncolytic virus PV701. Clin. Cancer Res. 13, 977–985.PubMedCrossRefGoogle Scholar
  261. 261..
    Laurie, S. A., Bell, J. C., Atkins, H. L., Roach, J., Bamat, M. K., O'Neil, J. D., Roberts, M. S., Groene, W. S., and Lorence, R. M. (2006) A phase 1 clinical study of intravenous administration of PV701, an oncolytic virus, using two-step desensitization. Clin. Cancer Res. 12, 2555–2562.PubMedCrossRefGoogle Scholar
  262. 262..
    Lorence, R. M., Roberts, M. S., O'Neil, J. D., Groene, W. S., Miller, J. A., Mueller, S. N., and Bamat, M. K. (2007) Phase 1 clinical experience using intravenous administration of PV701, an oncolytic Newcastle disease virus. Curr. Cancer Drug Targets 7, 157–167.PubMedCrossRefGoogle Scholar
  263. 263..
    Pecora, A. L., Rizvi, N., Cohen, G. I., Meropol, N. J., Sterman, D., Marshall, J. L., Goldberg, S., Gross, P., O'Neil, J. D., Groene, W. S., Roberts, M. S., Rabin, H., Bamat, M. K., and Lorence, R. M. (2002) Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J. Clin. Oncol. 20, 2251–2266.PubMedCrossRefGoogle Scholar
  264. 264..
    Marcato, P., Shmulevitz, M., Pan, D., Stoltz, D., and Lee, P. W. (2007) Ras transformation mediates reovirus oncolysis by enhancing virus uncoating, particle infectivity, and apoptosis-dependent release. Mol. Ther. 15, 1522–1530.PubMedCrossRefGoogle Scholar
  265. 265..
    Hallahan, D. E., Beckett, M. A., Kufe, D., and Weichselbaum, R. R. (1990) The interaction between recombinant human tumor necrosis factor and radiation in 13 human tumor cell lines. Int. J. Radiat. Oncol. Biol. Phys. 19, 69–74.PubMedCrossRefGoogle Scholar
  266. 266..
    Hallahan, D. E., Spriggs, D. R., Beckett, M. A., Kufe, D. W., and Weichselbaum, R. R. (1989) Increased tumor necrosis factor alpha mRNA after cellular exposure to ionizing radiation. Proc. Natl. Acad. Sci. USA 86, 10104–10107.PubMedCrossRefGoogle Scholar
  267. 267..
    Datta, R., Rubin, E., Sukhatme, V., Qureshi, S., Hallahan, D., Weichselbaum, R. R., and Kufe, D. W. (1992) Ionizing radiation activates transcription of the EGR1 gene via CArG elements. Proc. Natl. Acad. Sci. USA 89, 10149–10153.PubMedCrossRefGoogle Scholar
  268. 268..
    Mezhir, J. J., Smith, K. D., Posner, M. C., Senzer, N., Yamini, B., Kufe, D. W., and Weichselbaum, R. R. (2006) Ionizing radiation: a genetic switch for cancer therapy. Cancer Gene Ther. 13, 1–6.PubMedCrossRefGoogle Scholar
  269. 269..
    Weichselbaum, R. R., Hallahan, D. E., Beckett, M. A., Mauceri, H. J., Lee, H., Sukhatme, V. P., and Kufe, D. W. (1994) Gene therapy targeted by radiation preferentially radiosensitizes tumor cells. Cancer Res. 54, 4266–4269.PubMedGoogle Scholar
  270. 270..
    Seung, L. P., Mauceri, H. J., Beckett, M. A., Hallahan, D. E., Hellman, S., and Weichselbaum, R. R. (1995) Genetic radiotherapy overcomes tumor resistance to cytotoxic agents. Cancer Res. 55, 5561–5565.PubMedGoogle Scholar
  271. 271..
    Chung, T. D., Mauceri, H. J., Hallahan, D. E., Yu, J. J., Chung, S., Grdina, W. L., Yajnik, S., Kufe, D. W., and Weichselbaum, R. R. (1998) Tumor necrosis factor-alpha-based gene therapy enhances radiation cytotoxicity in human prostate cancer. Cancer Gene Ther. 5, 344–349.PubMedGoogle Scholar
  272. 272..
    Staba, M. J., Mauceri, H. J., Kufe, D. W., Hallahan, D. E., and Weichselbaum, R. R. (1998) Adenoviral TNF-alpha gene therapy and radiation damage tumor vasculature in a human malignant glioma xenograft. Gene Ther. 5, 293–300.PubMedCrossRefGoogle Scholar
  273. 273..
    Senzer, N., Mani, S., Rosemurgy, A., Nemunaitis, J., Cunningham, C., Guha, C., Bayol, N., Gillen, M., Chu, K., Rasmussen, C., Rasmussen, H., Kufe, D., Weichselbaum, R., and Hanna, N. (2004) TNFerade biologic, an adenovector with a radiation-inducible promoter, carrying the human tumor necrosis factor alpha gene: a phase I study in patients with solid tumors. J. Clin. Oncol. 22, 592–601.PubMedCrossRefGoogle Scholar
  274. 274..
    Mundt, A. J., Vijayakumar, S., Nemunaitis, J., Sandler, A., Schwartz, H., Hanna, N., Peabody, T., Senzer, N., Chu, K., Rasmussen, C. S., Kessler, P. D., Rasmussen, H. S., Warso, M., Kufe, D. W., Gupta, T. D., and Weichselbaum, R. R. (2004) A Phase I trial of TNFerade biologic in patients with soft tissue sarcoma in the extremities. Clin. Cancer Res. 10, 5747–5753.PubMedCrossRefGoogle Scholar
  275. 275..
    Mezhir, J. J., Schmidt, H., Yamini, B., Senzer, N. N., Posner, M. C., Kufe, D. W., and Weichselbaum, R. R. (2005) Chemo-inducible gene therapy. Anticancer Drugs 16, 1053–1058.PubMedCrossRefGoogle Scholar
  276. 276..
    Lopez, C. A., Kimchi, E. T., Mauceri, H. J., Park, J. O., Mehta, N., Murphy, K. T., Beckett, M. A., Hellman, S., Posner, M. C., Kufe, D. W., and Weichselbaum, R. R. (2004) Chemoinducible gene therapy: a strategy to enhance doxorubicin antitumor activity. Mol. Cancer Ther. 3, 1167–1175.PubMedCrossRefGoogle Scholar
  277. 277..
    Park, J. O., Lopez, C. A., Gupta, V. K., Brown, C. K., Mauceri, H. J., Darga, T. E., Manan, A., Hellman, S., Posner, M. C., Kufe, D. W., and Weichselbaum, R. R. (2002) Transcriptional control of viral gene therapy by cisplatin. J. Clin. Invest. 110, 403–410.PubMedGoogle Scholar
  278. 278..
    Yamini, B., Yu, X., Gillespie, G. Y., Kufe, D. W., and Weichselbaum, R. R. (2004) Transcriptional targeting of adenovirally delivered tumor necrosis factor alpha by temozolomide in experimental glioblastoma. Cancer Res. 64, 6381–6384.PubMedCrossRefGoogle Scholar
  279. 279..
    Yamini, B., Yu, X., Pytel, P., Galanopoulos, N., Rawlani, V., Veerapong, J., Bickenbach, K., and Weichselbaum, R. R. (2007) Adenovirally Delivered Tumor Necrosis Factor-{alpha} Improves the Antiglioma Efficacy of Concomitant Radiation and Temozolomide Therapy. Clin. Cancer Res. 13, 6217–6223.PubMedCrossRefGoogle Scholar
  280. 280..
    Walther, W., Stein, U., Fichtner, I., Alexander, M., Shoemaker, R. H., and Schlag, P. M. (2000) Mdr1 promoter-driven tumor necrosis factor-alpha expression for a chemotherapy-controllable combined in vivo gene therapy and chemotherapy of tumors. Cancer Gene Ther. 7, 893–900.PubMedCrossRefGoogle Scholar
  281. 281..
    Walther, W., Stein, U., and Schlag, P. M. (2002) Use of the human MDR1 promoter for heat-inducible expression of therapeutic genes. Int. J. Cancer 98, 291–296.PubMedCrossRefGoogle Scholar
  282. 282..
    Walther, W., Arlt, F., Fichtner, I., Aumann, J., Stein, U., and Schlag, P. M. (2007) Heat-inducible in vivo gene therapy of colon carcinoma by human mdr1 promoter-regulated tumor necrosis factor-alpha expression. Mol. Cancer Ther. 6, 236–243.PubMedCrossRefGoogle Scholar
  283. 283..
    Devi, G. R. (2006) siRNA-based approaches in cancer therapy. Cancer Gene Ther. 13, 819–829.PubMedCrossRefGoogle Scholar
  284. 284..
    Karagiannis, T. C., and El-Osta, A. (2005) RNA interference and potential therapeutic applications of short interfering RNAs. Cancer Gene Ther. 12, 787–795.PubMedCrossRefGoogle Scholar
  285. 285..
    O'Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., Lane, W. S., Cao, Y., Sage, E. H., and Folkman, J. (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328.PubMedCrossRefGoogle Scholar
  286. 286..
    O'Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., Flynn, E., Birkhead, J. R., Olsen, B. R., and Folkman, J. (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285.PubMedCrossRefGoogle Scholar
  287. 287..
    Dawson, D. W., Volpert, O. V., Gillis, P., Crawford, S. E., Xu, H., Benedict, W., and Bouck, N. P. (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285, 245–248.PubMedCrossRefGoogle Scholar
  288. 288..
    Millauer, B., Longhi, M. P., Plate, K. H., Shawver, L. K., Risau, W., Ullrich, A., and Strawn, L. M. (1996) Dominant-negative inhibition of Flk-1 suppresses the growth of many tumor types in vivo. Cancer Res. 56, 1615–1620.PubMedGoogle Scholar
  289. 289..
    Mae, M., O'Connor, T. P., and Crystal, R. G. (2005) Gene transfer of the vascular endothelial growth factor receptor flt-1 suppresses pulmonary metastasis associated with lung growth. Am. J. Respir. Cell. Mol. Biol. 33, 629–635.PubMedCrossRefGoogle Scholar
  290. 290..
    Streck, C. J., Zhou, J., Ng, C. Y., Zhang, Y., Nathwani, A. C., and Davidoff, A. M. (2004) Longterm recombinant adeno-associated, virus-mediated, liver-generated expression of an angiogenesis inhibitor improves survival in mice with disseminated neuroblastoma. J. Am. Coll. Surg. 199, 78–86.PubMedCrossRefGoogle Scholar
  291. 291..
    Ferrara, N., Hillan, K. J., Gerber, H. P., and Novotny, W. (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov. 3, 391–400.PubMedCrossRefGoogle Scholar
  292. 292..
    Drevs, J., Hofmann, I., Hugenschmidt, H., Wittig, C., Madjar, H., Muller, M., Wood, J., Martiny-Baron, G., Unger, C., and Marme, D. (2000) Effects of PTK787/ZK 222584, a specific inhibitor of vascular endothelial growth factor receptor tyrosine kinases, on primary tumor, metastasis, vessel density, and blood flow in a murine renal cell carcinoma model. Cancer Res. 60, 4819–4824.PubMedGoogle Scholar
  293. 293..
    Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., Berlin, J., Baron, A., Griffing, S., Holmgren, E., Ferrara, N., Fyfe, G., Rogers, B., Ross, R., and Kabbinavar, F. (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342.PubMedCrossRefGoogle Scholar
  294. 294..
    Giantonio, B. J., Catalano, P. J., Meropol, N. J., O'Dwyer, P. J., Mitchell, E. P., Alberts, S. R., Schwartz, M. A., and Benson, A. B., 3rd (2007) Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J. Clin. Oncol. 25, 1539–1544.PubMedCrossRefGoogle Scholar
  295. 295..
    Cohen, M. H., Gootenberg, J., Keegan, P., and Pazdur, R. (2007) FDA drug approval summary: bevacizumab plus FOLFOX4 as second-line treatment of colorectal cancer. Oncologist 12, 356–361.PubMedCrossRefGoogle Scholar
  296. 296..
    Cohen, M. H., Gootenberg, J., Keegan, P., and Pazdur, R. (2007) FDA drug approval summary: bevacizumab (Avastin) plus Carboplatin and Paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist 12, 713–718.PubMedCrossRefGoogle Scholar
  297. 297..
    O'Reilly, M. S., Holmgren, L., Chen, C., and Folkman, J. (1996) Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat. Med. 2, 689–692.PubMedCrossRefGoogle Scholar
  298. 298..
    Subramanian, I. V., Ghebre, R., and Ramakrishnan, S. (2005) Adeno-associated virus-mediated delivery of a mutant endostatin suppresses ovarian carcinoma growth in mice. Gene Ther. 12, 30–38.PubMedCrossRefGoogle Scholar
  299. 299..
    Subramanian, I. V., Bui Nguyen, T. M., Truskinovsky, A. M., Tolar, J., Blazar, B. R., and Ramakrishnan, S. (2006) Adeno-associated virus-mediated delivery of a mutant endostatin in combination with carboplatin treatment inhibits orthotopic growth of ovarian cancer and improves long-term survival. Cancer Res. 66, 4319–4328.PubMedCrossRefGoogle Scholar
  300. 300..
    Zhang, X., Xu, J., Lawler, J., Terwilliger, E., and Parangi, S. (2007) Adeno-associated virus-mediated antiangiogenic gene therapy with thrombospondin-1 type 1 repeats and endostatin. Clin. Cancer Res. 13, 3968–3976.PubMedCrossRefGoogle Scholar
  301. 301..
    Albini, A., Marchisone, C., Del Grosso, F., Benelli, R., Masiello, L., Tacchetti, C., Bono, M., Ferrantini, M., Rozera, C., Truini, M., Belardelli, F., Santi, L., and Noonan, D. M. (2000) Inhibition of angiogenesis and vascular tumor growth by interferon-producing cells: A gene therapy approach. Am. J. Pathol. 156, 1381–1393.PubMedCrossRefGoogle Scholar
  302. 302..
    Sanches, R., Kuiper, M., Penault-Llorca, F., Aunoble, B., D'Incan, C., and Bignon, Y. J. (2000) Antitumoral effect of interleukin-12-secreting fibroblasts in a mouse model of ovarian cancer: implications for the use of ovarian cancer biopsy-derived fibroblasts as a vehicle for regional gene therapy. Cancer Gene Ther. 7, 707–720.PubMedCrossRefGoogle Scholar
  303. 303..
    Saleh, M., Jonas, N. K., Wiegmans, A., and Stylli, S. S. (2000) The treatment of established intracranial tumors by in situ retroviral IFN-gamma transfer. Gene Ther. 7, 1715–1724.PubMedCrossRefGoogle Scholar
  304. 304..
    Xue, S. A., and Stauss, H. J. (2007) Enhancing immune responses for cancer therapy. Cell. Mol. Immunol. 4, 173–184.PubMedGoogle Scholar
  305. 305..
    Sobol, R. E. (2006) The rationale for prophylactic cancer vaccines and need for a paradigm shift. Cancer Gene Ther. 13, 725–731.PubMedCrossRefGoogle Scholar
  306. 306..
    Thomas, S., Hart, D. P., Xue, S. A., Cesco-Gaspere, M., and Stauss, H. J. (2007) T-cell receptor gene therapy for cancer: the progress to date and future objectives. Expert Opin. Biol. Ther. 7, 1207–1218.PubMedCrossRefGoogle Scholar
  307. 307..
    Akbulut, H., Tang, Y., Akbulut, K. G., Maynard, J., Zhang, L., and Deisseroth, A. (2006) Antitumor immune response induced by i.t. injection of vector-activated dendritic cells and chemotherapy suppresses metastatic breast cancer. Mol. Cancer Ther. 5, 1975–1985.PubMedCrossRefGoogle Scholar
  308. 308..
    Ribas, A., Butterfield, L. H., Glaspy, J. A., and Economou, J. S. (2003) Current developments in cancer vaccines and cellular immunotherapy. J. Clin. Oncol. 21, 2415–2432.PubMedCrossRefGoogle Scholar
  309. 309..
    Vetter, K. M., and Geller, S. E. (2007) Moving forward: human papillomavirus vaccination and the prevention of cervical cancer. J. Womens Health (Larchmt) 16, 1258–1268.CrossRefGoogle Scholar
  310. 310..
    (2007) Prophylactic efficacy of a quadrivalent human papillomavirus (HPV) vaccine in women with virological evidence of HPV Infection. J. Infect. Dis. 196, 1438–1446.Google Scholar
  311. 311..
    Bosch, F. X., Lorincz, A., Munoz, N., Meijer, C. J., and Shah, K. V. (2002) The causal relation between human papillomavirus and cervical cancer. J. Clin. Pathol. 55, 244–265.PubMedCrossRefGoogle Scholar
  312. 312..
    Rosenberg, S. A., and Dudley, M. E. (2004) Cancer regression in patients with metastatic melanoma after the transfer of autologous antitumor lymphocytes. Proc. Natl. Acad. Sci. USA 101(Suppl 2), 14639–14645.PubMedCrossRefGoogle Scholar
  313. 313..
    Morgan, R. A., Dudley, M. E., Wunderlich, J. R., Hughes, M. S., Yang, J. C., Sherry, R. M., Royal, R. E., Topalian, S. L., Kammula, U. S., Restifo, N. P., Zheng, Z., Nahvi, A., de Vries, C. R., Rogers-Freezer, L. J., Mavroukakis, S. A., and Rosenberg, S. A. (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129.PubMedCrossRefGoogle Scholar
  314. 314..
    Gillet, J. P., Kimchi-Sarfaty, C., Shinar, S., Licht, T., Lee, C., Hafkemeyer, P., Hrycyna, C., Pastan, I., and Gottesman, M. (2008) Selectable markers for gene therapy. In: Templeton, N., ed. Gene and Cell Therapy: Therapeutic Mechanisms and Strategies, 3rd edition. Boca Raton, FL: Taylor & Francis.Google Scholar
  315. 315..
    Flasshove, M., Banerjee, D., Leonard, J. P., Mineishi, S., Li, M. X., Bertino, J. R., and Moore, M. A. (1998) Retroviral transduction of human CD34 + umbilical cord blood progenitor cells with a mutated dihydrofolate reductase cDNA. Hum. Gene Ther. 9, 63–71.PubMedCrossRefGoogle Scholar
  316. 316..
    Wang, G., Weiss, C., Sheng, P., and Bresnick, E. (1996) Retrovirus-mediated transfer of the human O6-methylguanine-DNA methyltransferase gene into a murine hematopoietic stem cell line and resistance to the toxic effects of certain alkylating agents. Biochem. Pharmacol. 51, 1221–1228.PubMedCrossRefGoogle Scholar
  317. 317..
    Letourneau, S., Greenbaum, M., and Cournoyer, D. (1996) Retrovirus-mediated gene transfer of rat glutathione S-transferase Yc confers in vitro resistance to alkylating agents in human leukemia cells and in clonogenic mouse hematopoietic progenitor cells. Hum. Gene Ther. 7, 831–840.PubMedCrossRefGoogle Scholar
  318. 318..
    Magni, M., Shammah, S., Schiro, R., Mellado, W., Dalla-Favera, R., and Gianni, A. M. (1996) Induction of cyclophosphamide-resistance by aldehyde-dehydrogenase gene transfer. Blood 87, 1097–1103.PubMedGoogle Scholar
  319. 319..
    Zaboikin, M., Srinivasakumar, N., and Schuening, F. (2006) Gene therapy with drug resistance genes. Cancer Gene Ther. 13, 335–345.PubMedCrossRefGoogle Scholar
  320. 320..
    Gottesman, M. M., Hrycyna, C. A., Schoenlein, P. V., Germann, U. A., and Pastan, I. (1995) Genetic analysis of the multidrug transporter. Annu. Rev. Genet. 29, 607–649.PubMedCrossRefGoogle Scholar
  321. 321..
    D'Hondt, V., Caruso, M., and Bank, A. (1997) Retrovirus-mediated gene transfer of the multidrug resistance-associated protein (MRP) cDNA protects cells from chemotherapeutic agents. Hum. Gene Ther. 8, 1745–1751.PubMedCrossRefGoogle Scholar
  322. 322..
    Ujhelly, O., Ozvegy, C., Varady, G., Cervenak, J., Homolya, L., Grez, M., Scheffer, G., Roos, D., Bates, S. E., Varadi, A., Sarkadi, B., and Nemet, K. (2003) Application of a human multidrug transporter (ABCG2) variant as selectable marker in gene transfer to progenitor cells. Hum. Gene Ther. 14, 403–412.PubMedCrossRefGoogle Scholar
  323. 323..
    Szakacs, G., Paterson, J. K., Ludwig, J. A., Booth-Genthe, C., and Gottesman, M. M. (2006) Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 5, 219–234.PubMedCrossRefGoogle Scholar
  324. 324..
    Gillet, J. P., Efferth, T., and Remacle, J. (2007) Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim. Biophys. Acta 1775, 237–262.PubMedGoogle Scholar
  325. 325..
    Hesdorffer, C., Antman, K., Bank, A., Fetell, M., Mears, G., and Begg, M. (1994) Human MDR gene transfer in patients with advanced cancer. Hum. Gene Ther. 5, 1151–1160.PubMedCrossRefGoogle Scholar
  326. 326..
    O'Shaughnessy, J. A., Cowan, K. H., Nienhuis, A. W., McDonagh, K. T., Sorrentino, B. P., Dunbar, C. E., Chiang, Y., Wilson, W., Goldspiel, B., Kohler, D., and et al. (1994) Retroviral mediated transfer of the human multidrug resistance gene (MDR-1) into hematopoietic stem cells during autologous transplantation after intensive chemotherapy for metastatic breast cancer. Hum. Gene Ther. 5, 891–911.PubMedCrossRefGoogle Scholar
  327. 327..
    Cowan, K. H., Moscow, J. A., Huang, H., Zujewski, J. A., O'Shaughnessy, J., Sorrentino, B., Hines, K., Carter, C., Schneider, E., Cusack, G., Noone, M., Dunbar, C., Steinberg, S., Wilson, W., Goldspiel, B., Read, E. J., Leitman, S. F., McDonagh, K., Chow, C., Abati, A., Chiang, Y., Chang, Y. N., Gottesman, M. M., Pastan, I., and Nienhuis, A. (1999) Paclitaxel chemotherapy after autologous stem-cell transplantation and engraftment of hematopoietic cells transduced with a retrovirus containing the multidrug resistance complementary DNA (MDR1) in metastatic breast cancer patients. Clin. Cancer Res. 5, 1619–1628.PubMedGoogle Scholar
  328. 328..
    Hanania, E. G., Giles, R. E., Kavanagh, J., Fu, S. Q., Ellerson, D., Zu, Z., Wang, T., Su, Y., Kudelka, A., Rahman, Z., Holmes, F., Hortobagyi, G., Claxton, D., Bachier, C., Thall, P., Cheng, S., Hester, J., Ostrove, J. M., Bird, R. E., Chang, A., Korbling, M., Seong, D., Cote, R., Holzmayer, T., Deisseroth, A. B., and et al. (1996) Results of MDR-1 vector modification trial indicate that granulocyte/macrophage colony-forming unit cells do not contribute to posttransplant hematopoietic recovery following intensive systemic therapy. Proc. Natl. Acad. Sci. USA 93, 15346–15351.PubMedCrossRefGoogle Scholar
  329. 329..
    Hesdorffer, C., Ayello, J., Ward, M., Kaubisch, A., Vahdat, L., Balmaceda, C., Garrett, T., Fetell, M., Reiss, R., Bank, A., and Antman, K. (1998) Phase I trial of retroviral-mediated transfer of the human MDR1 gene as marrow chemoprotection in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation. J. Clin. Oncol. 16, 165–172.PubMedGoogle Scholar
  330. 330..
    Gottesman, M. M. (2003) Cancer gene therapy: an awkward adolescence. Cancer Gene Ther. 10, 501–508.PubMedCrossRefGoogle Scholar
  331. 331..
    Parker, A. L., Newman, C., Briggs, S., Seymour, L., and Sheridan, P. J. (2003) Nonviral gene delivery: techniques and implications for molecular medicine. Expert Rev. Mol. Med. 5, 1–15.PubMedCrossRefGoogle Scholar
  332. 332..
    Berk, A. J. (1986) Adenovirus promoters and E1A transactivation. Annu. Rev. Genet. 20, 45–79.PubMedCrossRefGoogle Scholar
  333. 333..
    Roth, J., and Dobbelstein, M. (2003) Interaction of p53 with the adenovirus E1B-55 kDa protein. Methods Mol. Biol. 234, 135–149.PubMedGoogle Scholar
  334. 334..
    Sundararajan, R., Cuconati, A., Nelson, D., and White, E. (2001) Tumor necrosis factor-alpha induces Bax-Bak interaction and apoptosis, which is inhibited by adenovirus E1B 19K. J. Biol. Chem. 276, 45120–45127.PubMedCrossRefGoogle Scholar
  335. 335..
    Kindsmuller, K., Groitl, P., Hartl, B., Blanchette, P., Hauber, J., and Dobner, T. (2007) Intranuclear targeting and nuclear export of the adenovirus E1B-55K protein are regulated by SUMO1 conjugation. Proc. Natl. Acad. Sci. USA 104, 6684–6689.PubMedCrossRefGoogle Scholar
  336. 336..
    Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., Roth, K. A., MacGregor, G. R., Thompson, C. B., and Korsmeyer, S. J. (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730.PubMedCrossRefGoogle Scholar
  337. 337..
    Han, J., Goldstein, L. A., Gastman, B. R., Rabinovitz, A., Wang, G. Q., Fang, B., and Rabinowich, H. (2004) Differential involvement of Bax and Bak in TRAIL-mediated apoptosis of leukemic T cells. Leukemia 18, 1671–1680.PubMedCrossRefGoogle Scholar
  338. 338..
    Swaminathan, S., and Thimmapaya, B. (1996) Transactivation of adenovirus E2-early promoter by E1A and E4 6/7 in the context of viral chromosome. J. Mol. Biol. 258, 736–746.PubMedCrossRefGoogle Scholar
  339. 339..
    Horwitz, M. S. (2001) Adenovirus immunoregulatory genes and their cellular targets. Virology 279, 1–8.PubMedCrossRefGoogle Scholar
  340. 340..
    Horwitz, M. S. (2004) Function of adenovirus E3 proteins and their interactions with immunoregulatory cell proteins. J. Gene Med. 6(Suppl 1), S172–183.PubMedCrossRefGoogle Scholar
  341. 341..
    Weitzman, M. D. (2005) Functions of the adenovirus E4 proteins and their impact on viral vectors. Front Biosci. 10, 1106–1117.PubMedCrossRefGoogle Scholar
  342. 342..
    Peng, K. W., Morling, F. J., Cosset, F. L., Murphy, G., and Russell, S. J. (1997) A gene delivery system activatable by disease-associated matrix metalloproteinases. Hum. Gene Ther. 8, 729–738.PubMedCrossRefGoogle Scholar
  343. 343..
    Buchholz, C. J., Peng, K. W., Morling, F. J., Zhang, J., Cosset, F. L., and Russell, S. J. (1998) In vivo selection of protease cleavage sites from retrovirus display libraries. Nat. Biotechnol. 16, 951–954.PubMedCrossRefGoogle Scholar
  344. 344..
    Peng, K. W., Vile, R., Cosset, F. L., and Russell, S. (1999) Selective transduction of protease-rich tumors by matrix-metalloproteinase-targeted retroviral vectors. Gene Ther. 6, 1552–1557.PubMedCrossRefGoogle Scholar
  345. 345..
    Maurice, M., Mazur, S., Bullough, F. J., Salvetti, A., Collins, M. K., Russell, S. J., and Cosset, F. L. (1999) Efficient gene delivery to quiescent interleukin-2 (IL-2)-dependent cells by murine leukemia virus-derived vectors harboring IL-2 chimeric envelope glycoproteins. Blood 94, 401–410.PubMedGoogle Scholar
  346. 346..
    Cosset, F. L., Morling, F. J., Takeuchi, Y., Weiss, R. A., Collins, M. K., and Russell, S. J. (1995) Retroviral retargeting by envelopes expressing an N-terminal binding domain. J. Virol. 69, 6314–6322.PubMedGoogle Scholar
  347. 347..
    Fielding, A. K., Maurice, M., Morling, F. J., Cosset, F. L., and Russell, S. J. (1998) Inverse targeting of retroviral vectors: selective gene transfer in a mixed population of hematopoietic and nonhematopoietic cells. Blood 91, 1802–1809.PubMedGoogle Scholar
  348. 348..
    Gordon, E. M., Liu, P. X., Chen, Z. H., Liu, L., Whitley, M. D., Gee, C., Groshen, S., Hinton, D. R., Beart, R. W., and Hall, F. L. (2000) Inhibition of metastatic tumor growth in nude mice by portal vein infusions of matrix-targeted retroviral vectors bearing a cytocidal cyclin G1 construct. Cancer Res. 60, 3343–3347.PubMedGoogle Scholar
  349. 349..
    Hall, F. L., Liu, L., Zhu, N. L., Stapfer, M., Anderson, W. F., Beart, R. W., and Gordon, E. M. (2000) Molecular engineering of matrix-targeted retroviral vectors incorporating a surveillance function inherent in von Willebrand factor. Hum. Gene Ther. 11, 983–993.PubMedCrossRefGoogle Scholar
  350. 350..
    Lorimer, I. A., and Lavictoire, S. J. (2000) Targeting retrovirus to cancer cells expressing a mutant EGF receptor by insertion of a single chain antibody variable domain in the envelope glycoprotein receptor binding lobe. J. Immunol. Methods 237, 147–157.PubMedCrossRefGoogle Scholar
  351. 351..
    Martin, F., Chowdhury, S., Neil, S., Phillipps, N., and Collins, M. K. (2002) Envelope-targeted retrovirus vectors transduce melanoma xenografts but not spleen or liver. Mol. Ther. 5, 269–274.PubMedCrossRefGoogle Scholar
  352. 352..
    Engelstadter, M., Bobkova, M., Baier, M., Stitz, J., Holtkamp, N., Chu, T. H., Kurth, R., Dornburg, R., Buchholz, C. J., and Cichutek, K. (2000) Targeting human T cells by retroviral vectors displaying antibody domains selected from a phage display library. Hum. Gene Ther. 11, 293–303.PubMedCrossRefGoogle Scholar
  353. 353..
    Khare, P. D., Shao-Xi, L., Kuroki, M., Hirose, Y., Arakawa, F., Nakamura, K., Tomita, Y., and Kuroki, M. (2001) Specifically targeted killing of carcinoembryonic antigen (CEA)-expressing cells by a retroviral vector displaying single-chain variable fragmented antibody to CEA and carrying the gene for inducible nitric oxide synthase. Cancer Res. 61, 370–375.PubMedGoogle Scholar
  354. 354..
    Somia, N. V., Miyoshi, H., Schmitt, M. J., and Verma, I. M. (2000) Retroviral vector targeting to human immunodeficiency virus type 1-infected cells by receptor pseudotyping. J. Virol. 74, 4420–4424.PubMedCrossRefGoogle Scholar
  355. 355..
    Bittner, A., Mitnacht-Kraus, R., and Schnierle, B. S. (2002) Specific transduction of HIV-1 envelope expressing cells by retroviral vectors pseudotyped with hybrid CD4/CXCR4 receptors. J. Virol. Methods 104, 83–92.PubMedCrossRefGoogle Scholar
  356. 356..
    Kimchi-Sarfaty, C., Alexander, N. S., Brittain, S., Ali, S., and Gottesman, M. M. (2004) Transduction of multiple cell types using improved conditions for gene delivery and expression of SV40 pseudovirions packaged in vitro. Biotechniques 37, 270–275.PubMedGoogle Scholar
  357. 357..
    Oppenheim, A., Peleg, A., Fibach, E., and Rachmilewitz, E. A. (1986) Efficient introduction of plasmid DNA into human hemopoietic cells by encapsidation in simian virus 40 pseudovirions. Proc. Natl. Acad. Sci. USA 83, 6925–6929.PubMedCrossRefGoogle Scholar
  358. 358..
    Kimchi-Sarfaty, C., Brittain, S., Garfield, S., Caplen, N. J., Tang, Q., and Gottesman, M. M. (2005) Efficient delivery of RNA interference effectors via in vitro-packaged SV40 pseudovirions. Hum. Gene Ther. 16, 1110–1115.PubMedCrossRefGoogle Scholar
  359. 359..
    Kimchi-Sarfaty, C., Arora, M., Sandalon, Z., Oppenheim, A., and Gottesman, M. M. (2003) High cloning capacity of in vitro packaged SV40 vectors with no SV40 virus sequences. Hum. Gene Ther. 14, 167–177.PubMedCrossRefGoogle Scholar
  360. 360..
    Vera, M., Prieto, J., Strayer, D. S., and Fortes, P. (2004) Factors influencing the production of recombinant SV40 vectors. Mol. Ther. 10, 780–791.PubMedCrossRefGoogle Scholar
  361. 361..
    Strayer, D. S., Lamothe, M., Wei, D., Milano, J., and Kondo, R. (2001) Generation of recombinant SV40 vectors for gene transfer. Methods Mol. Biol. 165, 103–117.PubMedGoogle Scholar
  362. 362..
    Vera, M., and Fortes, P. (2004) Simian virus-40 as a gene therapy vector. DNA Cell Biol. 23, 271–282.PubMedCrossRefGoogle Scholar
  363. 363..
    Grzmil, M., Thelen, P., Hemmerlein, B., Schweyer, S., Voigt, S., Mury, D., and Burfeind, P. (2003) Bax inhibitor-1 is overexpressed in prostate cancer and its specific down-regulation by RNA interference leads to cell death in human prostate carcinoma cells. Am. J. Pathol. 163, 543–552.PubMedCrossRefGoogle Scholar
  364. 364..
    Futami, T., Miyagishi, M., Seki, M., and Taira, K. (2002) Induction of apoptosis in HeLa cells with siRNA expression vector targeted against bcl-2. Nucleic Acids Res. Suppl.(2): 251–252.Google Scholar
  365. 365..
    Yin, J. Q., Gao, J., Shao, R., Tian, W. N., Wang, J., and Wan, Y. (2003) siRNA agents inhibit oncogene expression and attenuate human tumor cell growth. J. Exp. Ther. Oncol. 3, 194–204.PubMedCrossRefGoogle Scholar
  366. 366..
    Duxbury, M. S., Ito, H., Benoit, E., Zinner, M. J., Ashley, S. W., and Whang, E. E. (2003) RNA interference targeting focal adhesion kinase enhances pancreatic adenocarcinoma gemcitabine chemosensitivity. Biochem. Biophys. Res. Commun. 311, 786–792.PubMedCrossRefGoogle Scholar
  367. 367..
    Sanceau, J., Truchet, S., and Bauvois, B. (2003) Matrix metalloproteinase-9 silencing by RNA interference triggers the migratory-adhesive switch in Ewing's sarcoma cells. J. Biol. Chem. 278, 36537–36546.PubMedCrossRefGoogle Scholar
  368. 368..
    Zhang, L., Yang, N., Mohamed-Hadley, A., Rubin, S. C., and Coukos, G. (2003) Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem. Biophys. Res. Commun. 303, 1169–1178.PubMedCrossRefGoogle Scholar
  369. 369..
    De Schrijver, E., Brusselmans, K., Heyns, W., Verhoeven, G., and Swinnen, J. V. (2003) RNA interference-mediated silencing of the fatty acid synthase gene attenuates growth and induces morphological changes and apoptosis of LNCaP prostate cancer cells. Cancer Res. 63, 3799–3804.PubMedGoogle Scholar
  370. 370..
    Nieth, C., Priebsch, A., Stege, A., and Lage, H. (2003) Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett. 545, 144–150.PubMedCrossRefGoogle Scholar
  371. 371..
    Lois, C., Refaeli, Y., Qin, X. F., and Van Parijs, L. (2001) Retroviruses as tools to study the immune system. Curr. Opin. Immunol. 13, 496–504.PubMedCrossRefGoogle Scholar
  372. 372..
    Spankuch-Schmitt, B., Bereiter-Hahn, J., Kaufmann, M., and Strebhardt, K. (2002) Effect of RNA silencing of polo-like kinase-1 (PLK1) on apoptosis and spindle formation in human cancer cells. J. Natl. Cancer Inst. 94, 1863–1877.PubMedCrossRefGoogle Scholar
  373. 373..
    Konnikova, L., Kotecki, M., Kruger, M. M., and Cochran, B. H. (2003) Knockdown of STAT3 expression by RNAi induces apoptosis in astrocytoma cells. BMC Cancer 3, 23.PubMedCrossRefGoogle Scholar
  374. 374..
    Nagy, P., Arndt-Jovin, D. J., and Jovin, T. M. (2003) Small interfering RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor (erbB1) and induce apoptosis in erbB1-overexpressing cells. Exp Cell Res. 285, 39–49.PubMedCrossRefGoogle Scholar
  375. 375..
    Zhang, M., Zhang, X., Bai, C. X., Chen, J., and Wei, M. Q. (2004) Inhibition of epidermal growth factor receptor expression by RNA interference in A549 cells. Acta Pharmacol. Sin. 25, 61–67.PubMedGoogle Scholar
  376. 376..
    Butz, K., Ristriani, T., Hengstermann, A., Denk, C., Scheffner, M., and Hoppe-Seyler, F. (2003) siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene 22, 5938–5945.PubMedCrossRefGoogle Scholar
  377. 377..
    Li, X. P., Li, G., Peng, Y., Kung, H. F., and Lin, M. C. (2004) Suppression of Epstein-Barr virus-encoded latent membrane protein-1 by RNA interference inhibits the metastatic potential of nasopharyngeal carcinoma cells. Biochem. Biophys. Res. Commun. 315, 212–218.PubMedCrossRefGoogle Scholar
  378. 378..
    Wilda, M., Fuchs, U., Wossmann, W., and Borkhardt, A. (2002) Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene 21, 5716–5724.PubMedCrossRefGoogle Scholar
  379. 379..
    Wohlbold, L., van der Kuip, H., Miething, C., Vornlocher, H. P., Knabbe, C., Duyster, J., and Aulitzky, W. E. (2003) Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571). Blood 102, 2236–2239.PubMedCrossRefGoogle Scholar
  380. 380..
    Kosciolek, B. A., Kalantidis, K., Tabler, M., and Rowley, P. T. (2003) Inhibition of telomerase activity in human cancer cells by RNA interference. Mol. Cancer Ther. 2, 209–216.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jean-Pierre Gillet
    • 1
  • Benjamin Macadangdang
    • 1
  • Robert L. Fathke
    • 2
  • Michael M. Gottesman
    • 1
  • Chava Kimchi-Sarfaty
    • 2
  1. 1.Laboratory of Cell Biology, National Cancer InstituteNational Institutes of HealthBethesdaMD
  2. 2.Center for Biologics Evaluation and ResearchFood and Drug AdministrationBethesdaMD

Personalised recommendations