Skip to main content

Time-Resolved NMR Spectroscopy: Ligand-Induced Refolding of Riboswitches

  • Protocol
  • First Online:
Riboswitches

Part of the book series: Methods in Molecular Biology ((MIMB,volume 540))

  • 1899 Accesses

Summary

A detailed understanding of cellular mechanisms requires knowledge of structure and dynamics of the involved biomacromolecules at atomic resolution. NMR spectroscopy uniquely allows determination of static and dynamic processes at atomic level, including structured states often represented by a single state as well as by unstructured conformational ensembles. While a high-resolution description of structured states may also be obtained by other techniques, the characterization of structural transitions occurring during biomolecular folding is only feasible exploiting NMR spectroscopic methods. The NMR methodical strategy includes the fast initiation of a folding reaction in situ and the possibility to detect the induced process with sufficient time resolution on the respective NMR time scale. In the case of ligand-induced structural transitions of RNA, the initiation of the folding reaction can be achieved by laser-triggered deprotection of a photolabile caged ligand whose release induces folding of a riboswitch RNA. The strategy discussed here is general and can also be transferred to other biological processes, where at least one key reagent or substrate, e.g., ions, ligands, pH, or one specific conformational state, can be photochemically caged. The rates of reversible and irreversible reactions or structural transitions that can be covered by real-time NMR methods range from milliseconds up to hours.

In this chapter, we discuss the application of a time-resolved NMR strategy to resolve the ligand-induced folding of the guanine-sensing riboswitch aptamer domain of the B. subtilis xpt-pbuX operon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 159.49
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fürtig, B., Buck, J., Manoharan, V., (2007). Time-resolved NMR studies of RNA folding. Biopolymers 86, 360–383.

    Article  PubMed  Google Scholar 

  2. Buck, J., Fürtig, B., Noeske, J., Wöhnert, J., Schwalbe, H. (2007). Time-resolved NMR methods resolving ligand-induced RNA folding at atomic resolution. Proc. Natl Acad. Sci. U. S. A. 104, 15699–15704.

    Article  PubMed  CAS  Google Scholar 

  3. Fürtig, B., Richter, C., Wöhnert, J., Schwalbe, H. (2003). NMR spectroscopy of RNA. Chembiochem 4, 936–962.

    Article  PubMed  Google Scholar 

  4. Otting, G., Wüthrich, K. (1989). Extended heteronuclear editing of 2D 1H NMR spectra of isotope-labeled proteins, using the X (ω1, ω2) double half filter. J. Magn. Reson. 85, 586–594.

    Article  CAS  Google Scholar 

  5. Mayer, G., Heckel, A. (2006). Biologically active molecules with a “light switch”. Angew. Chem. Int. Ed. Engl. 45, 4900–4921.

    Article  PubMed  CAS  Google Scholar 

  6. Kühn, T., Schwalbe, H. (2000). Monitoring the kinetics of ion-dependent protein folding by time-resolved NMR spectroscopy at atomic resolution. J. Am. Chem. Soc. 122, 6169–6174.

    Article  Google Scholar 

  7. Wenter, P., Fürtig, B., Hainard, A., Schwalbe, H., Pitsch, S. (2005). Kinetics of photoinduced RNA refolding by real-time NMR ­spectroscopy. Angew. Chem. Int. Ed. Engl. 44, 2600–2603.

    Article  PubMed  CAS  Google Scholar 

  8. Mandal, M., Boese, B., Barrick, J. E., Winkler, W. C., Breaker, R. R. (2003). Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113, 577–586.

    Article  PubMed  CAS  Google Scholar 

  9. Serganov, A., Yuan, Y. R., Pikovskaya, O., (2004). Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem. Biol. 11, 1729–1741.

    Article  PubMed  CAS  Google Scholar 

  10. Noeske, J., Richter, C., Grundl, M. A., Nasiri, H. R., Schwalbe, H., Wöhnert, J. (2005) An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs. Proc. Natl Acad. Sci. U. S. A. 102, 1372–1377.

    Article  PubMed  CAS  Google Scholar 

  11. Batey, R. T., Gilbert, S. D., Montange, R. K. (2004). Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432, 411–415.

    Article  PubMed  CAS  Google Scholar 

  12. Davanloo, P., Rosenberg, A. H., Dunn, J. J., Studier, F. W. (1984). Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc. Natl Acad. Sci. U. S. A. 81, 2035–2039.

    Article  PubMed  CAS  Google Scholar 

  13. Liu, M., Mao, X., Ye, C., Huang, H., Nicholson, J. K., Lindon, J. C. (1998). Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy. J. Magn. Reson. 132, 125–129.

    Article  CAS  Google Scholar 

  14. Sklenar, V., Bax, A. (1987). A new water suppression technique for generating pure-phase spectra with equal excitation over a wide bandwidth. J. Magn. Reson. 75, 378–383.

    Article  CAS  Google Scholar 

  15. Akoka, S., Barantin, L., Trierweiler, M. (1999). Concentration measurement by proton NMR using the ERETIC method. Anal. Chem. 71, 2554–2557.

    Article  PubMed  CAS  Google Scholar 

  16. Ernst, R. R., Bodenhausen, G., Wokaun, A. (1994) Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford University Press, Oxford.

    Google Scholar 

  17. Noeske, J., Buck, J., Fürtig, B., Nasiri, H. R., Schwalbe, H., Wöhnert, J. (2007). Interplay of “induced fit” and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch. Nucleic Acids Res. 35, 572–583.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the DFG (SFB 579: “RNA-Ligand-Interaction”), the state of Hesse (Center for Biomolecular Magnetic Resonance (BMRZ)), the “Studienstiftung des Deutschen Volkes” (predoctoral fellowship for B.F.) and the E.U. (“EU-NMR-European Network of Research Infrastructures for Providing Access and Technological Advancement in Bio-NMR”, FP-2005-RII3-Contract-no. 026145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Schwalbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Buck, J., Fürtig, B., Noeske, J., Wöhnert, J., Schwalbe, H. (2009). Time-Resolved NMR Spectroscopy: Ligand-Induced Refolding of Riboswitches. In: Serganov, A. (eds) Riboswitches. Methods in Molecular Biology, vol 540. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-558-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-558-9_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-88-6

  • Online ISBN: 978-1-59745-558-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics