Skip to main content

High-Level Production of a Humanized ImmunoRNase Fusion Protein from Stably Transfected Myeloma Cells

  • Protocol
  • First Online:
Therapeutic Antibodies

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 525))

Abstract

ImmunoRNases represent a highly attractive alternative to conventional immunotoxins for cancer therapy. Quantitative production of immunoRNases in appropriate expression systems, however, remains a major challenge for further clinical development of these novel compounds. Here we describe a method for high-level production and purification of a fully functional immunoRNase fusion protein from supernatants of stably transfected mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cesano, A. and Gayko, U. (2003) CD22 as a target of passive immunotherapy. Semin. Oncol. 30, 253–257.

    Article  PubMed  CAS  Google Scholar 

  2. Senderowicz, A. M., Vitetta, E., Headlee, D., Ghetie, V., Uhr, J. W., Figg, W. D., Lush, R. M., Stetler-Stevenson, M., Kershaw, G., Kingma, D. W., Jaffe, E. S., and Sausville, E. A. (1997) Complete sustained response of a refractory, post-transplantation, large B-cell lymphoma to an anti-CD22 immunotoxin. Ann. Intern. Med. 126, 882–885.

    PubMed  CAS  Google Scholar 

  3. Kreitman, R. J., Wilson, W. H., Bergeron, K., Raggio, M., Stetler-Stevenson, M., FitzGerald, D. J., and Pastan, I. (2001) Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N. Engl. J. Med. 345, 241–247.

    Article  PubMed  CAS  Google Scholar 

  4. Amlot, P. L., Stone, M. J., Cunningham, D., Fay, J., Newman, J., Collins, R., May, R., McCarthy, M., Richardson, J., and Ghetie, V. (1993) A phase I study of an anti-CD22-deglycosylated ricin A chain immunotoxin in the treatment of B-cell lymphomas resistant to conventional therapy. Blood 82, 2624–2633.

    PubMed  CAS  Google Scholar 

  5. Sausville, E. A., Headlee, D., Stetler-Stevenson, M., Jaffe, E. S., Solomon, D., Figg, W. D., Herdt, J., Kopp, W. C., Rager, H., and Steinberg, S. M. (1995) Continuous infusion of the anti-CD22 immunotoxin IgG-RFB4-SMPT-dgA in patients with B-cell lymphoma: a phase I study. Blood 85, 3457–3465.

    PubMed  CAS  Google Scholar 

  6. Vitetta, E. S., Stone, M., Amlot, P., Fay, J., May, R., Till, M., Newman, J., Clark, P., Collins, R., Cunningham, D., et al. (1991) Phase I immunotoxin trial in patients with B-cell lymphoma. Cancer Res 51, 4052–4058.

    PubMed  CAS  Google Scholar 

  7. Rybak, S. M., and Newton, D. L. (2001) Antibody targeted therapeutics for lymphoma: new focus on the CD22 antigen and RNA. Expert Opin. Biol. Ther. 1, 995–1003.

    Article  Google Scholar 

  8. St. Clair, D. K., Rybak, S. M., Riordan, J. F., and Vallee, B. L. (1987) Angiogenin abolishes cell-free protein synthesis by specific ribonucleolytic inactivation of ribosomes. Proc. Natl. Acad. Sci. USA 84, 8330–8334.

    Article  Google Scholar 

  9. Saxena, S. K., Rybak, S. M., Winkler, G., Meade, H. M., McGray, P., Youle, R. J., and Ackerman, E. J. (1991) Comparison of RNases and toxins upon injection into Xenopus oocytes. J. Biol. Chem. 266, 21208–21214.

    PubMed  CAS  Google Scholar 

  10. Saxena, S. K., Rybak, S. M., Davey, R. T., Jr., Youle, R. J., and Ackerman, E. J. (1992) Angiogenin is a cytotoxic, tRNA-specific ribonuclease in the RNase A superfamily. J. Biol. Chem. 267, 21982–21986.

    PubMed  CAS  Google Scholar 

  11. Rybak, S. M., Hoogenboom, H. R., Meade, H. M., Raus, J. C., Schwartz, D., and Youle, R. J. (1992) Humanization of immunotoxins. Proc. Natl. Acad. Sci. USA 89, 3165–3169.

    Article  PubMed  CAS  Google Scholar 

  12. Newton, D. L., Xue, Y., Olson, K. A., Fett, J. W., and Rybak, S. M. (1996) Angiogenin single-chain immunofusions: influence of peptide linkers and spacers between fusion protein domains. Biochemistry 35, 545–553.

    Article  PubMed  CAS  Google Scholar 

  13. Stocker, M., Tur, M. K., Sasse, S., Krussmann, A., Barth, S., and Engert, A. (2003) Secretion of functional anti-CD30-angiogenin immunotoxins into the supernatant of transfected 293T-cells. Protein Expr. Purif. 28, 211–219.

    Article  PubMed  CAS  Google Scholar 

  14. Krauss, J., Arndt, M. A., Vu, B. K., Newton, D. L., and Rybak, S. M. (2005) Targeting malignant B-cell lymphoma with a humanized anti-CD22 scFv-angiogenin immunoenzyme. Br. J. Haematol. 128, 602–609.

    Article  PubMed  CAS  Google Scholar 

  15. Kozak, M. (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J. Mol. Biol. 196, 947–950.

    Article  PubMed  CAS  Google Scholar 

  16. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., and Pease, L. R. (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59.

    Article  PubMed  CAS  Google Scholar 

  17. Benedict, C. A., MacKrell, A. J., and Anderson, W. F. (1997) Determination of the binding affinity of an anti-CD34 single-chain antibody using a novel, flow cytometry based assay. J. Immunol. Methods 201, 223–231.

    Article  PubMed  CAS  Google Scholar 

  18. Nielsen, U. B., Adams, G. P., Weiner, L. M., and Marks, J. D. (2000) Targeting of bivalent anti-ErbB2 diabody antibody fragments to tumor cells is independent of the intrinsic antibody affinity. Cancer Res. 60, 6434–6440.

    PubMed  CAS  Google Scholar 

  19. Bebbington, C. R., Renner, G., Thomson, S., King, D., Abrams, D., and Yarranton, G. T. (1992) High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Biotechnology (NY) 10, 169–175.

    Article  CAS  Google Scholar 

  20. Bravo, J., Fernandez, E., Ribo, M., de Llorens, R., and Cuchillo, C. M. (1994) A versatile negative-staining ribonuclease zymogram. Anal. Biochem. 219, 82–86.

    Article  PubMed  CAS  Google Scholar 

  21. Korn, K., Foerster, H. H., and Hahn, U. (2000) Phage display of RNase A and an improved method for purification of phages displaying RNases. Biol. Chem. 381, 179–181.

    Article  PubMed  CAS  Google Scholar 

  22. Arndt, M. A., Krauss, J., Vu, B. K., Newton, D. L., and Rybak, S. M. (2005) A dimeric angiogenin immunofusion protein mediates selective toxicity toward CD22+ tumor cells. J. Immunother. 28, 245–251.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Krauss, J., Exner, E., Mavratzas, A., Seeber, S., Arndt, M.A. (2009). High-Level Production of a Humanized ImmunoRNase Fusion Protein from Stably Transfected Myeloma Cells. In: Dimitrov, A. (eds) Therapeutic Antibodies. Methods in Molecular Biology™, vol 525. Humana Press. https://doi.org/10.1007/978-1-59745-554-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-554-1_24

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-92-3

  • Online ISBN: 978-1-59745-554-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics