RNA and DNA Microarrays

  • Stuart C. Sealfon
  • Tearina T. Chu
Part of the Methods in Molecular Biology book series (MIMB, volume 671)


The development of microarray technology has revolutionized RNA and deoxyribonucleic acid (DNA) research. In contrast with traditional biological assays, microarrays allow the simultaneous measurement of tens of thousands of messenger RNA (mRNA) transcripts for gene expression or of genomic DNA fragments for copy number variation analysis. Over the past decade, genome-wide RNA or DNA microarray analysis has become an essential component of biology and biomedical research. The successful use of microarrays requires attention to unique issues of experimental design and execution. This chapter provides an overview of the methodology and applications of RNA and DNA microarrays in various areas of biological research.

Key words

RNA DNA Expression Comparative genomic hybridization cDNA BAC Microarray Copy number variation Transcripts 



Our microarray research is supported by grants from NIH NIDDK and by a research contract from NIAID.


  1. 1.
    Fleischmann, R.D., et al., (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269(5223): p. 496–512.CrossRefGoogle Scholar
  2. 2.
    International Human Genome Sequencing Consortium, (2004). Finishing the euchromatic sequence of the human genome. Nature, 431(7011): p. 931–945.CrossRefGoogle Scholar
  3. 3.
    Schena, M., (1996).Genome analysis with gene expression microarrays. Bioessays, 18(5): p. 427–431.CrossRefGoogle Scholar
  4. 4.
    Vissers, L.E.L.M., et al., (2005). Identification of disease genes by whole genome CGH arrays. Hum. Mol. Genet, 14(suppl_2): p. R215–223.CrossRefGoogle Scholar
  5. 5.
    Fu, S., et al., (2008). Peripheral arterial occlusive disease: global gene expression analyses suggest a major role for immune and inflammatory responses. BMC Genomics, 9(1): p. 369.CrossRefGoogle Scholar
  6. 6.
    Lenk, G.M., et al., (2007). Whole genome expression profiling reveals a significant role for immune function in human abdominal aortic aneurysms. BMC Genomics, 8: p. 237–249.CrossRefGoogle Scholar
  7. 7.
    Seo, D., et al., (2004). Gene expression phenotypes of atherosclerosis. Arterioscler Thromb Vasc Biol, 24: p. 1922–1927.CrossRefGoogle Scholar
  8. 8.
    Singhal, S., et al., (2003). Gene expression profiling of malignant mesothelioma. Clin Cancer Res, 9: p. 3080–3097.Google Scholar
  9. 9.
    Schena, M., et al., (1996). Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci USA, 93(20): p. 10614–10619.CrossRefGoogle Scholar
  10. 10.
    DeRisi, J., et al., (1996). Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet, 14(4): p. 457–460.CrossRefGoogle Scholar
  11. 11.
    Milano, A., et al., (2008).Molecular subsets in the gene expression signatures of scleroderma skin. PLoS One, 3(7): p. e2696.CrossRefGoogle Scholar
  12. 12.
    Schena, M., et al., (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270(5235): p. 467–470.CrossRefGoogle Scholar
  13. 13.
    Lander, E.S., et al., (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822): p. 860–921.CrossRefGoogle Scholar
  14. 14.
    Bentley, D.R., et al., (2008). Accurate whole human genome sequencing using reversible termi­nator chemistry. Nature, 456(7218): p. 53–59.CrossRefGoogle Scholar
  15. 15.
    Venter, J.C., et al., (2001). The sequence of the human genome. Science, 291(5507): p. 1304–1351.CrossRefGoogle Scholar
  16. 16.
    Cerdeno-Tarraga, A.M., et al., (2003). The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res, 31(22): p. 6516–6523.CrossRefGoogle Scholar
  17. 17.
    Rew, D.A., (2004). The sequencing of the rat genome. Eur J Surg Oncol, 30(8): p. 905–906.Google Scholar
  18. 18.
    Tettelin, H., et al., (2001). Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science, 293(5529): p. 498–506.CrossRefGoogle Scholar
  19. 19.
    Nierman, W.C., et al., (2001). Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci USA, 98(7): p. 4136–4141.CrossRefGoogle Scholar
  20. 20.
    Check, E., (2002). Draft mouse genome makes public debut. Nature, 417(6885): p. 106.CrossRefGoogle Scholar
  21. 21.
    Galitski, T., et al., (1999). Ploidy regulation of gene expression. Science, 285(5425): p. 251–254.CrossRefGoogle Scholar
  22. 22.
    Tu, B.P., et al., (2005). Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science, 310(5751): p. 1152–1158.CrossRefGoogle Scholar
  23. 23.
    Iyer, V.R., et al., (1999). The transcriptional program in the response of human fibroblasts to serum. Science, 283(5398): p. 83–87.CrossRefGoogle Scholar
  24. 24.
    Plescia, C., C. Rogler, and L. Rogler, (2001). Genomic expression analysis implicates Wnt signaling pathway and extracellular matrix alterations in hepatic specification and differentiation of murine hepatic stem cells. Differentiation, 68(4–5): p. 254–269.CrossRefGoogle Scholar
  25. 25.
    Lee, K.-H., D.-H. Yu, and Y.-S. Lee, (2009). Gene expression profiling of rat cerebral cortex development using cDNA microarrays. Neurochemical Res, 34(6): p. 1030–1038.CrossRefGoogle Scholar
  26. 26.
    Nikolova-Krstevski, V., et al., (2008). Gene expression analysis of embryonic stem cells expressing VE-cadherin (CD144) during endothelial differentiation. BMC Genomics, 9(1): p. 240.CrossRefGoogle Scholar
  27. 27.
    Zhu, H., H. Yang, M. R. Owen, (2007). Combined microarray analysis uncovers self-renewal related signaling in mouse embryonic stem cells. Syst Synth Biol, 4(1): p. 171–181.CrossRefGoogle Scholar
  28. 28.
    Chen, V.C., et al., (2008). Notch signaling respecifies the hemangioblast to a cardiac fate. Nat Biotech, 26(10): p. 1169–1178.CrossRefGoogle Scholar
  29. 29.
    Kakar, S.S., et al., (2003). Identification of distinct gene expression profiles associated with treatment of LbetaT2 cells with gonadotropin-releasing hormone agonist using microarray analysis. Gene, 308: p. 67–77.CrossRefGoogle Scholar
  30. 30.
    Malyala, A., et al., (2004). Suppression subtractive hybridization and microarray identification of estrogen-regulated hypothalamic genes. Neurochem Res, 29(6): p. 1189–1200.CrossRefGoogle Scholar
  31. 31.
    Auger, C.J., H.M. Jessen, and A.P. Auger, (2006). Microarray profiling of gene expression patterns in adult male rat brain following acute progesterone treatment. Brain Res, 1067(1): p. 58–66.CrossRefGoogle Scholar
  32. 32.
    Elin Lehrmann, W.J.F., (2008). Transcriptional correlates of human substance use. Ann N Y Acad Sci, 1139(Drug Addiction: Research Frontiers and Treatment Advances): p. 34–42.CrossRefGoogle Scholar
  33. 33.
    Runne, H., et al., (2008). Dysregulation of gene expression in primary neuron models of Huntington’s disease shows that polyglutamine-related effects on the striatal transcriptome may not be dependent on brain circuitry. J Neurosci, 28(39): p. 9723–9731.CrossRefGoogle Scholar
  34. 34.
    Salas, R., et al., (2008). Nicotine relieves anxiogenic-like behavior in acetylcholinesterase-R overexpressing mice but not in wild-type mice. Mol Pharmacol, 74(6): p. 1641–1648, mol.108.048454.CrossRefGoogle Scholar
  35. 35.
    Bergström, A., et al., (2007). Molecular pathways associated with stress resilience and drug resistance in the chronic mild stress rat model of depression – a gene expression study. J Mol Neurosci, 33: p. 201–215.CrossRefGoogle Scholar
  36. 36.
    Golub, T.R., et al., (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286(5439): p. 531–537.CrossRefGoogle Scholar
  37. 37.
    Perou, C.M., et al., (2000). Molecular portraits of human breast tumours. Nature, 406(6797): p. 747–752.CrossRefGoogle Scholar
  38. 38.
    Garber, M.E., et al., (2001). Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA, 98(24): p. 13784–13789.CrossRefGoogle Scholar
  39. 39.
    Alizadeh, A.A., et al., (2001). Towards a novel classification of human malignancies based on gene expression patterns. J Pathol, 195(1): p. 41–52.CrossRefGoogle Scholar
  40. 40.
    Sørlie, T., et al., (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA, 98(19): p. 10869–10874.CrossRefGoogle Scholar
  41. 41.
    Murphy, D.J. and J.R. Brown, (2007). Identification of gene targets against dormant phase Mycobacterium tuberculosis infections. BMC Infectious Disease, 7: p. 84.CrossRefGoogle Scholar
  42. 42.
    Helbig, K.J., et al., (2008). Differential expression of the CXCR3 ligands in chronic hepatitis C, and their modulation by HCV in vitro. J Virol, 83(2): p. 836–846, JVI.01388-08.CrossRefGoogle Scholar
  43. 43.
    Mikhailovich, V., et al., (2008). DNA microarrays in the clinic: infectious diseases. Bioessays, 30(7): p. 673–682.CrossRefGoogle Scholar
  44. 44.
    Wright, H.J., et al., (2008). Periodontitis associates with a type 1 IFN signature in peripheral blood neutrophils. J Immunol, 181(8): p. 5775–5784.Google Scholar
  45. 45.
    Kaminski, N., et al., (2000). Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis. Proc Natl Acad Sci USA, 97(4): p. 1778–1783.CrossRefGoogle Scholar
  46. 46.
    Kinter, J., T. Zeis, and N. Schaeren-Wiemers, (2008). RNA profiling of MS brain tissues. Int MS J, 15(2): p. 51–58.Google Scholar
  47. 47.
    Satoh, J-i., et al., (2008). Neuromyelitis optica/Devic’s disease: gene expression profiling of brain lesions. Neuropathology, 28(6): p. 561–576.Google Scholar
  48. 48.
    Grünblatt, E., et al., (2007). Comparison analysis of gene expression patterns between sporadic Alzheimer’s and Parkinson’s disease. J Alzheimers Dis, 12(4): p. 291–311.Google Scholar
  49. 49.
    Mash, D.C., et al., (2007). Gene expression in human hippocampus from cocaine abusers identifies genes which regulate extracellular matrix remodeling. PLoS One, 2(11): p. e1187.CrossRefGoogle Scholar
  50. 50.
    Colantuoni, C., et al., (2008). Age-related changes in the expression of schizophrenia susceptibility genes in the human prefrontal cortex. Brain Struct Funct, 213(1): p. 255–271.CrossRefGoogle Scholar
  51. 51.
    Iwamoto, K., M. Bundo, and T. Kato, (2005). Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet, 14(2): p. 241–253.CrossRefGoogle Scholar
  52. 52.
    Chin, K.-V. and A.N.T. Kong, (2002). Application of DNA microarrays in pharmacogenomics and toxicogenomics. Pharmaceutical Res, 19(12): p. 1773–1778.CrossRefGoogle Scholar
  53. 53.
    Duncan, C.E., A.F. Chetcuti, and P.R. Schofield, (2008). Coregulation of genes in the mouse brain following treatment with clozapine, haloperidol, or olanzapine implicates altered potassium channel subunit expression in the mechanism of antipsychotic drug action. Psychiatr Genet, 18(5): p. 226–239.CrossRefGoogle Scholar
  54. 54.
    Debouck, C. and P.N. Goodfellow, (1999). DNA microarrays in drug discovery and development. Nat Genet, 21(1 Suppl): p. 48–50.CrossRefGoogle Scholar
  55. 55.
    Gerhold, D.L., R.V. Jensen, and S.R. Gullans, (2002). Better therapeutics through microarrays. Nat Genet, 32(Suppl): p. 547–551.CrossRefGoogle Scholar
  56. 56.
    Kresse, S., et al., (2008). DNA copy number changes in high-grade malignant peripheral nerve sheath tumors by array CGH. Mol Cancer, 7(1): p. 48.CrossRefGoogle Scholar
  57. 57.
    Ankita, P., et al., (2008). Validation of a targeted DNA microarray for the clinical evaluation of recurrent abnormalities in chronic lymphocytic leukemia. Am J Hematol, 83(7): p. 540–546.CrossRefGoogle Scholar
  58. 58.
    Shaffer, LG., et al., (1993). Familial interstitial deletion 11(p11.12p12) associated with parietal foramina, brachymicrocephaly, and mental retardation. Am J Med Genet, 45(5): p. 581–583.CrossRefGoogle Scholar
  59. 59.
    Kallioniemi, A., et al., (1992). Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 258(5083): p. 818–821.CrossRefGoogle Scholar
  60. 60.
    Mizuguchi, T., et al., (2008). Microarray comparative genomic hybridization analysis of 59 patients with schizophrenia. J Hum Genet, 53(10): p. 914–919.CrossRefGoogle Scholar
  61. 61.
    Jiang, M., et al., (2008). Simultaneously detection of genomic and expression alterations in prostate cancer using cDNA microarray. Prostate, 68(14): p. 1496–1509.CrossRefGoogle Scholar
  62. 62.
    Staaf, J., et al., (2008). Detection and precise mapping of germline rearrangements in <I>BRCA1, BRCA2, MSH2</I>, and <I>MLH1</I> using zoom-in array comparative genomic hybridization (aCGH). Hum Mutat, 29(4): p. 555–564.CrossRefGoogle Scholar
  63. 63.
    National Institutes of Health, (2001). Consensus conference 2000: adjuvant therapy for breast cancer. National Institutes of Health Consensus Development Conference Statement November 1–3, 2000. Cancer Control, 8(1): p. 55.Google Scholar
  64. 64.
    Goldhirsch, A., et al., (2003). Meeting highlights: Updated international expert consensus on the primary therapy of early breast cancer. J Clin Oncol, 21(17): p. 3357–3365.CrossRefGoogle Scholar
  65. 65.
    van ’t Veer, L.J., et al., (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415(6871): p. 530–536.CrossRefGoogle Scholar
  66. 66.
    van de Vijver, M.J., et al., (2002). A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med, 347(25): p. 1999–2009.CrossRefGoogle Scholar
  67. 67.
    Wang, Y., et al., (2005). Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet, 365(9460): p. 671–679.Google Scholar
  68. 68.
    Foekens, J.A., et al., (2006). Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer. J Clin Oncol, 24(11): p. 1665–1671.CrossRefGoogle Scholar
  69. 69.
    Chang, J.C., et al., (2003). Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet, 362(9381): p. 362–369.CrossRefGoogle Scholar
  70. 70.
    Ma, X.-J., et al., (2004). A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell, 5(6): p. 607–616.CrossRefGoogle Scholar
  71. 71.
    Ayers, M., et al., (2004). Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol, 22(12): p. 2284–2293.CrossRefGoogle Scholar
  72. 72.
    Gonzalez-Neira, A., et al., (2007). Genomewide high-density SNP linkage analysis of non-BRCA1/2 breast cancer families identifies various candidate regions and has greater power than microsatellite studies. BMC Genomics, 8(1): p. 299–.CrossRefGoogle Scholar
  73. 73.
    Climent, J., et al., (2007). Characterization of breast cancer by array comparative genomic hybridization (1).(MINIREVIEW/MINISYNTHESE)(Clinical report). Biochem Cell Biol, 85(4): p. 497–508.CrossRefGoogle Scholar
  74. 74.
    Telenius, H., et al., (1992). Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics, 13(3): p. 718–725.CrossRefGoogle Scholar
  75. 75.
    Zhang, L., et al., (1992). Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci USA, 89(13): p. 5847–5851.CrossRefGoogle Scholar
  76. 76.
    Hosono, S., et al., (2003). Unbiased whole-genome amplification directly from clinical samples. Genome Res, 13(5): p. 954–964.CrossRefGoogle Scholar
  77. 77.
    Paez, J.G., et al., (2004). Genome coverage and sequence fidelity of phi29 polymerase-based multiple strand displacement whole genome amplification. Nucleic Acids Res, 32(9): p. e71.CrossRefGoogle Scholar
  78. 78.
    Brown, P.O., (2007). Ozone News [cited 1; Available from:
  79. 79.
    Brown, P.O. Ozone News 2. 2007 [cited; Available from:
  80. 80.
    Fare, T.L., et al., (2003). Effects of atmospheric ozone on microarray data quality. Anal Chem, 75(17): p. 4672–4675.CrossRefGoogle Scholar
  81. 81.
    Klass, D. and D. Hogan, (2007). The Ozone Annihilator [cited; Available from:

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.NeurologyMount Sinai School of MedicineNew YorkUSA
  2. 2.Departments of Pharmacology and Systems TherapeuticsMount Sinai School of MedicineNew YorkUSA

Personalised recommendations