Skip to main content

Two-Photon Imaging of Capillary Blood Flow in Olfactory Bulb Glomeruli

  • Protocol
Book cover Dynamic Brain Imaging

Part of the book series: METHODS IN MOLECULAR BIOLOGY™ ((MIMB,volume 489))

Abstract

Two-photon laser scanning microscopy (TPLSM) is an efficient tool to study cerebral blood flow (CBF) and cellular activity in depth in the brain. We describe here the advantages and weaknesses of the olfactory bulb as a model to study neurovascular coupling using TPLSM. By combining intra- and extracellular recordings, TPLSM of CBF in individual capillaries, local application of drugs, we show that odor triggers odorant-specific and concentration-dependent increases in CBF. We also demonstrate that activation of neurons is required to trigger blood flow responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Villringer, A. & Dirnagl, U. Coupling of brain activity and cerebral blood flow: Basis of functional neuroimaging. Cerebrovasc. Brain Metab Rev. 7, 240–276 (1995).

    CAS  PubMed  Google Scholar 

  2. Magistretti, P.J., Pellerin, L., Rothman, D.L., & Shulman, R.G. Energy on demand. Science 283, 496–497 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Attwell, D. & Iadecola, C. The neural basis of functional brain imaging signals. Trends Neurosci. 25, 621–625 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Logothetis, N.K. & Pfeuffer, J. On the nature of the BOLD fMRI contrast mechanism. Magn. Reson. Imaging 22, 1517–1531 (2004).

    Article  PubMed  Google Scholar 

  5. Lauritzen, M. Reading vascular changes in brain imaging: Is dendritic calcium the key? Nat. Rev. Neurosci. 6, 77–85 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Mathiesen, C., Caesar, K., Akgoren, N., & Lauritzen, M. Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J. Physiol.-Lond. 512, 555–566 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Yang, G. & Iadecola, C. Activation of cerebellar climbing fibers increases cerebellar blood flow: Role of glutamate receptors, nitric oxide, and cGMP. Stroke 29, 499–507 (1998).

    CAS  PubMed  Google Scholar 

  8. Nielsen, A.N. & Lauritzen, M. Coupling and uncoupling of activity-dependent increases of neuronal activity and blood flow in rat somatosensory cortex. J. Physiol.-Lond. 533, 773–785 (2001).

    Article  CAS  Google Scholar 

  9. Hoffmeyer, H.W., Enager, P., Thomsen, K.J., & Lauritzen, M.J. Nonlinear neurovascular coupling in rat sensory cortex by activation of transcallosal fibers. J. Cereb. Blood Flow Metab(2006).

    Google Scholar 

  10. Gsell, W. et al. Differential effects of NMDA and AMPA glutamate receptors on functional magnetic resonance imaging signals and evoked neuronal activity during forepaw stimulation of the rat. J. Neurosci. 26, 8409–8416 (2006).

    Article  PubMed  Google Scholar 

  11. Gurden, H., Uchida, N., & Mainen, Z.F. Sensory-evoked intrinsic optical signals in the olfactory bulb are coupled to glutamate release and uptake. Neuron 52, 335–345 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Logothetis, N.K. The Underpinnings of the BOLD Functional Magnetic Resonance Imaging Signal. J. Neurosci. 23, 3963–3971 (2003).

    CAS  PubMed  Google Scholar 

  13. Iadecola, C. & Nedergaard, M. Glial regulation of the cerebral microvasculature. Nat Neurosci 10, 1369–1376 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Zonta, M. et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6, 43–50 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Cauli, B. et al. Cortical GABA interneurons in neurovascular coupling: Relays for subcortical vasoactive pathways. J. Neurosci. 24, 8940–8949 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Mulligan, S.J. & MacVicar, B.A. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431, 195–199 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Filosa, J.A., Bonev, A.D., & Nelson, M.T. Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling. Circ. Res. 95, e73–e81 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Metea, M.R. & Newman, E.A. Glial cells dilate and constrict blood vessels: A mechanism of neurovascular coupling. J. Neurosci. 26, 2862–2870 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Filosa, J.A. et al. Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat. Neurosci. 9, 1397–1403 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Rancillac, A. et al. Glutamatergic Control of Microvascular Tone by Distinct GABA Neurons in the Cerebellum. J. Neurosci. 26, 6997–7006 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Vassar, R. et al. Topographic organization of sensory projections to the olfactory bulb. Cell 79, 981–991 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Ressler, K.J., Sullivan, S.L., & Buck, L.B. Information coding in the olfactory system: Evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79, 1245–55 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Nagao, H., Yoshihara, Y., Mitsui, S., Fujisawa, H., & Mori, K. Two mirror-image sensory maps with domain organization in the mouse main olfactory bulb. Neuroreport 11, 3023–3027 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Yang, X. et al. Dynamic mapping at the laminar level of odor-elicited responses in rat olfactory bulb by functional MRI. Proc. Natl. Acad. Sci. U. S. A 95, 7715–7720 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Xu, F., Kida, I., Hyder, F., & Shulman, R.G. Assessment and discrimination of odor stimuli in rat olfactory bulb by dynamic functional MRI. Proc. Natl. Acad. Sci. U. S. A 97, 10601–10606 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Kida, I., Xu, F., Shulman, R.G., & Hyder, F. Mapping at glomerular resolution: fMRI of rat olfactory bulb. Magn Reson. Med. 48, 570–576 (2002).

    Article  PubMed  Google Scholar 

  27. Schafer, J.R., Kida, I., Xu, F., Rothman, D.L., & Hyder, F. Reproducibility of odor maps by fMRI in rodents. Neuroimage. 31, 1238–1246 (2006).

    Article  PubMed  Google Scholar 

  28. Wachowiak, M. & Cohen, L.B. Representation of odorants by receptor neuron input to the mouse olfactory bulb. Neuron 32, 723–735 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Spors, H., Wachowiak, M., Cohen, L.B., & Friedrich, R.W. Temporal dynamics and latency patterns of receptor neuron input to the olfactory bulb. J. Neurosci. 26, 1247–1259 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Wachowiak, M., Denk, W., & Friedrich, R.W. Functional organization of sensory input to the olfactory bulb glomerulus analyzed by two-photon calcium imaging. Proc Natl Acad Sci U S A 101, 9097–9102 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Spors, H. & Grinvald, A. Spatio-temporal dynamics of odor representations in the mammalian olfactory bulb. Neuron 34, 301–315 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Rubin, B.D. & Katz, L.C. Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23, 499–511 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Uchida, N., Takahashi, Y.K., Tanifuji, M., & Mori, K. Odor maps in the mammalian olfactory bulb: Domain organization and odorant structural features. Nat. Neurosci. 3, 1035–1043 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Belluscio, L. & Katz, L.C. Symmetry, stereotypy, and topography of odorant representations in mouse olfactory bulbs. J. Neurosci. 21, 2113–2122 (2001).

    CAS  PubMed  Google Scholar 

  35. Luo, M. & Katz, L.C. Response correlation maps of neurons in the mammalian olfactory bulb. Neuron 32, 1165–1179 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Meister, M. & Bonhoeffer, T. Tuning and topography in an odor map on the rat olfactory bulb. J. Neurosci. 21, 1351–1360 (2001).

    CAS  PubMed  Google Scholar 

  37. Yuan, Q., Harley, C.W., McLean, J.H., & Knopfel, T. Optical imaging of odor preference memory in the rat olfactory bulb. J. Neurophysiol. 87, 3156–3159 (2002).

    PubMed  Google Scholar 

  38. Imamura, K., Mataga, N., & Mori, K. Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. I. Aliphatic compounds. J. Neurophysiol. 68, 1986–2002 (1992).

    CAS  PubMed  Google Scholar 

  39. Katoh, K., Koshimoto, H., Tani, A., & Mori, K. Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. II. Aromatic compounds. J. Neurophysiol. 70, 2161–2175 (1993).

    CAS  PubMed  Google Scholar 

  40. Yokoi, M., Mori, K., & Nakanishi, S. Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proc Natl Acad Sci U S A 92, 3371–5 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Stewart, W.B., Kauer, J.S., & Shepherd, G.M. Functional organization of rat olfactory bulb analysed by the 2-deoxyglucose method. J. Comp Neurol. 185, 715–734 (1979).

    Article  CAS  PubMed  Google Scholar 

  42. Johnson, B.A., Woo, C.C., & Leon, M. Spatial coding of odorant features in the glomerular layer of the rat olfactory bulb. J. Comp Neurol. 393, 457–471 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Denk, W., Strickler, J.H., & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Svoboda, K., Denk, W., Kleinfeld, D., & Tank, D.W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Kleinfeld, D., Mitra, P.P., Helmchen, F., & Denk, W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc Natl Acad Sci U S A 95, 15741–15746 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Charpak, S., Mertz, J., Beaurepaire, E., Moreaux, L., & Delaney, K. Odor-evoked calcium signals in dendrites of rat mitral cells. Proc Natl Acad Sci U S A 98, 1230–1234 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Debarbieux, F., Audinat, E., & Charpak, S. Action potential propagation in dendrites of rat mitral cells in vivo. J. Neurosci. 23, 5553–5560 (2003).

    CAS  PubMed  Google Scholar 

  48. Jung, J.C., Mehta, A.D., Aksay, E., Stepnoski, R., & Schnitzer, M.J. In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J. Neurophysiol. 92, 3121–3133 (2004).

    Article  PubMed  Google Scholar 

  49. Levene, M.J., Dombeck, D.A., Kasischke, K.A., Molloy, R.P., & Webb, W.W. In vivo multiphoton microscopy of deep brain tissue. J. Neurophysiol. 91, 1908–1912 (2004).

    Article  PubMed  Google Scholar 

  50. Gobel, W., Kerr, J.N., Nimmerjahn, A., & Helmchen, F. Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective. Opt. Lett. 29, 2521–2523 (2004).

    Article  PubMed  Google Scholar 

  51. Helmchen, F., Fee, M.S., Tank, D.W., & Denk, W. A miniature head-mounted two-photon microscope: High-resolution brain imaging in freely moving animals. Neuron 31, 903–912 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Oheim, M., Beaurepaire, E., Chaigneau, E., Mertz, J., & Charpak, S. Two-photon microscopy in brain tissue: Parameters influencing the imaging depth. J. Neurosci. Methods 111, 29–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Beaurepaire, E., Oheim, M., & Mertz, J. Ultra-deep two-photon fluorescence excitation in turbid media. Opt. Commun 188, 25–29 (2001).

    Article  CAS  Google Scholar 

  54. Theer, P., Hasan, M.T., & Denk, W. Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt. Lett. 28, 1022–1024 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Rueckel, M., Mack-Bucher, J.A., & Denk, W. Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc. Natl. Acad. Sci. U. S. A 103, 17137–17142 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Chaigneau, E., Oheim, M., Audinat, E., & Charpak, S. Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc Natl Acad Sci U S A 100, 13081–13086 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Attwell, D. & Laughlin, S.B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab 21, 1133–1145 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Sharp, F.R., Kauer, J.S., & Shepherd, G.M. Local sites of activity-related glucose metabolism in rat olfactory bulb during olfactory stimulation. Brain Res. 98, 596–600 (1975).

    Article  CAS  PubMed  Google Scholar 

  59. Tsai, A.G. et al. Microvascular and tissue oxygen gradients in the rat mesentery. Proc. Natl. Acad. Sci. U. S. A 95, 6590–6595 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Chaigneau, E. et al. The relationship between blood flow and neuronal activity in the rodent olfactory bulb. J. Neurosci. 27, 6452–6460 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Diez-Garcia, J. et al. Activation of cerebellar parallel fibers monitored in transgenic mice expressing a fluorescent Ca2+ indicator protein. Eur. J. Neurosci. 22, 627–635 (2005).

    Article  PubMed  Google Scholar 

  62. Takano, T. et al. Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci. 9, 260–267 (2005).

    Article  PubMed  Google Scholar 

  63. Rall, W. & Shepherd, G.M. Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. J. Neurophysiol. 31, 884–915 (1968).

    CAS  PubMed  Google Scholar 

  64. Petzold, G.C., Albeanu, D.F., Sato, T.F., & Murthy, V.N. Coupling of neural activity to blood flow in olfactory glomeruli is mediated by astrocytic pathways. Neuron 58, 897–910 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Shepherd, G.M. & Charpak, S. The olfactory glomerulus: a model for neuro-glio-vascular biology. Neuron 58, 827–829 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tiret, P., Chaigneau, E., Lecoq, J., Charpak, S. (2009). Two-Photon Imaging of Capillary Blood Flow in Olfactory Bulb Glomeruli. In: Hyder, F. (eds) Dynamic Brain Imaging. METHODS IN MOLECULAR BIOLOGY™, vol 489. Humana Press. https://doi.org/10.1007/978-1-59745-543-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-543-5_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-74-9

  • Online ISBN: 978-1-59745-543-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics