Skip to main content

Dynamic Magnetic Resonance Imaging of Cerebral Blood Flow Using Arterial Spin Labeling

  • Protocol
Dynamic Brain Imaging

Part of the book series: METHODS IN MOLECULAR BIOLOGY™ ((MIMB,volume 489))

Modern functional neuroimaging techniques, including positron emission tomography, optical imaging of intrinsic signals, and magnetic resonance imaging (MRI) rely on a tight coupling between neural activity and cerebral blood flow (CBF) to visualize brain activity using CBF as a surrogate marker. Because the spatial and temporal resolution of neuroimaging modalities is ultimately determined by the spatial and temporal specificity of the underlying hemodynamic signals, characterization of the spatial and temporal profiles of the hemodynamic response to focal brain stimulation is of paramount importance for the correct interpretation and quantification of functional data. The ability to properly measure and quantify CBF with MRI is a major determinant of progress in our understanding of brain function. We review the dynamic arterial spin labeling (DASL) method to measure CBF and the CBF functional response with high temporal resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rakic,P. (2002) Evolving concepts of cortical radial and areal specification. Prog Brain Res, 136, 265–280.

    Article  PubMed  Google Scholar 

  2. Ogawa,S., Tank,D.W., Menon,R., Ellermann,J.M., Kim,S.G., Merkle,H., Ugurbil,K. (1992) Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A, 89, 5951–5955.

    Article  CAS  PubMed  Google Scholar 

  3. Phelps,M.E., Mazziotta,J.C., Huang,S.C. (1982) Study of cerebral function with positron computed tomography. J Cereb Blood Flow Metab, 2, 113–162.

    CAS  PubMed  Google Scholar 

  4. Lieke,E.E., Frostig,R.D., Arieli,A., Ts’o,D.Y., Hildesheim,R., Grinvald,A. (1989) Optical imaging of cortical activity: Real-time imaging using extrinsic dye-signals and high resolution imaging based on slow intrinsic-signals. Annu Rev Physiol, 51,543–559.

    Article  CAS  PubMed  Google Scholar 

  5. Villringer,A., Dirnagl,U. (1995) Coupling of brain activity and cerebral blood flow: Basis of functional neuroimaging. Cerebrovasc Brain Metab Rev, 7, 240–276.

    CAS  PubMed  Google Scholar 

  6. Lauritzen,M. (2001) Relationship of spikes, synaptic activity, and local changes of cerebral blood flow. J. Cereb. Blood Flow Metab, 21, 1367–1383.

    Article  CAS  PubMed  Google Scholar 

  7. Attwell,D., Iadecola,C. (2002) The neural basis of functional brain imaging signals. Trends Neurosci, 25, 621–625.

    Article  CAS  PubMed  Google Scholar 

  8. Iadecola,C. (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat. Rev. Neurosci., 5, 347–360.

    Article  CAS  PubMed  Google Scholar 

  9. Logothetis,N.K. (2003) The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci, 23, 3963–3971.

    CAS  PubMed  Google Scholar 

  10. Lauritzen,M. (2005) Reading vascular changes in brain imaging: Is dendritic calcium the key? Nat Rev Neurosci, 6, 77–85.

    Article  CAS  PubMed  Google Scholar 

  11. Greenberg,J.H., Hand,P., Sylvestro,A., Reivich,M. (1979) Localized metabolic-flow coupling during functional activity. Acta Neurol. Scand., 60, 12–13.

    Google Scholar 

  12. Cox,S.B., Woolsey,T.A., Rovainen,C.M. (1993) Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. J. Cereb. Blood Flow Metab, 13, 899–913.

    CAS  PubMed  Google Scholar 

  13. Woolsey,T.A., Rovainen,C.M., Cox,S.B., Henegar,M.H., Liang,G.E., Liu,D., Moskalenko,Y.E., Sui,J., Wei,L. (1996) Neuronal units linked to microvascular modules in cerebral cortex: Response elements for imaging the brain. Cereb Cortex, 6, 647–660.

    Article  CAS  PubMed  Google Scholar 

  14. Gerrits,R.J., Raczynski,C., Greene,A.S., Stein,E.A. (2000) Regional cerebral blood flow responses to variable frequency whisker stimulation: An autoradiographic analysis. Brain Res, 864, 205–212.

    Article  CAS  PubMed  Google Scholar 

  15. Ehler,E., Karlhuber,G., Bauer,H.C., Draeger,A. (1995) Heterogeneity of smooth muscle-associated proteins in mammalian brain microvasculature. Cell Tissue Res., 279, 393–403.

    Article  CAS  PubMed  Google Scholar 

  16. Harrison,R.V., Harel,N., Panesar,J., Mount,R.J. (2002) Blood capillary distribution correlates with hemodynamic-based functional imaging in cerebral cortex. Cereb. Cortex, 12, 225–233.

    Article  PubMed  Google Scholar 

  17. Patel,U. (1983) Non-random distribution of blood vessels in the posterior region of the rat somatosensory cortex. Brain Res,289, 65–70.

    Article  CAS  PubMed  Google Scholar 

  18. Masamoto,K., Kurachi,T., Takizawa,N., Kobayashi,H., Tanishita,K. (2004) Successive depth variations in microvascular distribution of rat somatosensory cortex. Brain Res, 995, 66–75.

    Article  CAS  PubMed  Google Scholar 

  19. Duong,T.Q., Kim,D.S., Ugurbil,K., Kim,S.G. (2001) Localized cerebral blood flow response at submillimeter columnar resolution. Proc Natl Acad Sci U S A, 98, 10904–10909.

    Article  CAS  PubMed  Google Scholar 

  20. Narayan,S.M., Santori,E.M., Toga,A.W. (1994) Mapping functional activity in rodent cortex using optical intrinsic signals. Cereb Cortex 1994 Mar-Apr;4(2):195-, 4, 195–204.

    Article  CAS  Google Scholar 

  21. Yang,X., Hyder,F., Shulman,R.G. (1996) Activation of single whisker barrel in rat brain localized by functional magnetic resonance imaging. Proc Natl Acad Sci U S A, 93, 475–478.

    Article  CAS  PubMed  Google Scholar 

  22. Yang,X., Hyder,F., Shulman,R.G. (1997) Functional MRI BOLD signal coincides with electrical activity in the rat whisker barrels. Magn Reson Med, 38, 874–877.

    Article  CAS  PubMed  Google Scholar 

  23. Kurth,R., Villringer,K., Curio,G., Wolf,K.J., Krause,T., Repenthin,J., Schwiemann,J., Deuchert,M., Villringer,A. (2000) fMRI shows multiple somatotopic digit representations in human primary somatosensory cortex. Neuroreport, 11, 1487–1491.

    Article  CAS  PubMed  Google Scholar 

  24. Overduin,S.A., Servos,P. (2004) Distributed digit somatotopy in primary somatosensory cortex. Neuroimage, 23, 462–472.

    Article  PubMed  Google Scholar 

  25. Kida,I., Xu,F., Shulman,R.G., Hyder,F. (2002) Mapping at glomerular resolution: fMRI of rat olfactory bulb. Magn Reson Med, 48, 570–576.

    Article  PubMed  Google Scholar 

  26. Schafer,J.R., Kida,I., Xu,F., Rothman,D.L., Hyder,F. (2006) Reproducibility of odor maps by fMRI in rodents. Neuroimage, 31, 1238–1246.

    Article  PubMed  Google Scholar 

  27. Silva,A.C., Lee,S.P., Iadecola,C., Kim,S.G. (2000) Early temporal characteristics of cerebral blood flow and deoxyhemoglobin changes during somatosensory stimulation. J. Cereb. Blood Flow Metab, 20, 201–206.

    Article  CAS  PubMed  Google Scholar 

  28. Silva,A.C., Koretsky,A.P. (2002) Laminar specificity of functional MRI onset times during somatosensory stimulation in rat. Proc. Natl. Acad. Sci. U. S. A., 99, 15182–15187.

    Article  CAS  PubMed  Google Scholar 

  29. Lu,H., Patel,S., Luo,F., Li,S.J., Hillard,C.J., Ward,B.D., Hyde,J.S. (2004) Spatial correlations of laminar BOLD and CBV responses to rat whisker stimulation with neuronal activity localized by Fos expression. Magn Reson Med, 52, 1060–1068.

    Article  PubMed  Google Scholar 

  30. Bonhoeffer,T., Kim,D.S., Malonek,D., Shoham,D., Grinvald,A. (1995) Optical imaging of the layout of functional domains in area 17 and across the area 17/18 border in cat visual cortex. Eur. J. Neurosci., 7,1973–1988.

    Article  CAS  PubMed  Google Scholar 

  31. Malonek,D., Grinvald,A. (1996) Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science, 272, 551–554.

    Article  CAS  PubMed  Google Scholar 

  32. Malonek,D., Dirnagl,U., Lindauer,U., Yamada,K., Kanno,I., Grinvald,A. (1997) Vascular imprints of neuronal activity: Relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation. Proc. Natl. Acad. Sci. U. S. A, 94, 14826–14831.

    Article  CAS  PubMed  Google Scholar 

  33. Menon,R.S., Ogawa,S., Strupp,J.P., Ugurbil,K. (1997) Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. J Neurophysiol, 77, 2780–2787.

    CAS  PubMed  Google Scholar 

  34. Kim,D.S., Duong,T.Q., Kim,S.G. (2000) High-resolution mapping of iso-orientation columns by fMRI. Nat. Neurosci., 3, 164–169.

    Article  CAS  PubMed  Google Scholar 

  35. Cheng,K., Waggoner,R.A., Tanaka,K. (2001) Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron, 32, 359–374.

    Article  CAS  PubMed  Google Scholar 

  36. Goodyear,B.G., Menon,R.S. (2001) Brief visual stimulation allows mapping of ocular dominance in visual cortex using fMRI. Hum Brain Mapp, 14, 210–217.

    Article  CAS  PubMed  Google Scholar 

  37. Goodyear,B.G., Nicolle,D.A., Menon,R.S. (2002) High resolution fMRI of ocular dominance columns within the visual cortex of human amblyopes. Strabismus, 10,129–136.

    Article  PubMed  Google Scholar 

  38. Kim,S.G., Duong,T.Q. (2002) Mapping cortical columnar structures using fMRI. Physiol Behav., 77, 641–644.

    Article  CAS  PubMed  Google Scholar 

  39. Fukuda,M., Moon,C.H., Wang,P., Kim,S.G. (2006) Mapping iso-orientation columns by contrast agent-enhanced functional magnetic resonance imaging: Reproducibility, specificity, and evaluation by optical imaging of intrinsic signal. J Neurosci, 26, 11821–11832.

    Article  CAS  PubMed  Google Scholar 

  40. Sheth,S.A., Nemoto,M., Guiou,M.W., Walker,M.A., Toga,A.W. (2005) Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity. J Cereb Blood Flow Metab, 25, 830–841.

    Article  PubMed  Google Scholar 

  41. Narayan,S.M., Santori,E.M., Toga,A.W. (1994) Mapping functional activity in rodent cortex using optical intrinsic signals. Cereb Cortex 1994 Mar-Apr;4(2):195-, 4, 195–204.

    Article  CAS  Google Scholar 

  42. Narayan,S.M., Esfahani,P., Blood,A.J., Sikkens,L., Toga,A.W. (1995) Functional increases in cerebral blood volume over somatosensory cortex. J Cereb Blood Flow Metab, 15, 754–765.

    CAS  PubMed  Google Scholar 

  43. Berwick,J., Martin,C., Martindale,J., Jones,M., Johnston,D., Zheng,Y., Redgrave,P., Mayhew,J. (2002) Hemodynamic response in the unanesthetized rat: Intrinsic optical imaging and spectroscopy of the barrel cortex. J. Cereb. Blood Flow Metab, 22, 670–679.

    Article  PubMed  Google Scholar 

  44. Martindale,J., Mayhew,J., Berwick,J., Jones,M., Martin,C., Johnston,D., Redgrave,P., Zheng,Y. (2003) The hemodynamic impulse response to a single neural event. J. Cereb. Blood Flow Metab, 23, 546–555.

    Article  PubMed  Google Scholar 

  45. Berwick,J., Johnston,D., Jones,M., Martindale,J., Redgrave,P., McLoughlin,N., Schiessl,I., Mayhew,J.E. (2005) Neurovascular coupling investigated with two-dimensional optical imaging spectroscopy in rat whisker barrel cortex. Eur J Neurosci., 22, 1655–1666.

    Article  CAS  PubMed  Google Scholar 

  46. Narayan,S.M., Santori,E.M., Toga,A.W. (1994) Mapping functional activity in rodent cortex using optical intrinsic signals. Cereb Cortex 1994 Mar-Apr;4(2):195-, 4, 195–204.

    Google Scholar 

  47. Friston,K.J., Holmes,A.P., Poline,J.B., Grasby,P.J., Williams,S.C., Frackowiak,R.S., Turner,R. (1995) Analysis of fMRI time-series revisited. Neuroimage., 2, 45–53.

    Article  CAS  PubMed  Google Scholar 

  48. Boynton,G.M., Engel,S.A., Glover,G.H., Heeger,D.J. (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J. Neurosci., 16, 4207–4221.

    CAS  PubMed  Google Scholar 

  49. Aguirre,G.K., Zarahn,E., D’Esposito,M. (1998) The variability of human, BOLD hemodynamic responses. Neuroimage, 8, 360–369.

    Article  CAS  PubMed  Google Scholar 

  50. de Zwart,J.A., Silva,A.C., van Gelderen,P., Kellman,P., Fukunaga,M., Chu,R., Koretsky,A.P., Frank,J.A., Duyn,J.H. (2005) Temporal dynamics of the BOLD fMRI impulse response. Neuroimage., 24, 667–677.

    Article  PubMed  Google Scholar 

  51. Detre,J.A., Zhang,W., Roberts,D.A., Silva,A.C., Williams,D.S., Grandis,D.J., Koretsky,A.P., Leigh,J.S. (1994) Tissue specific perfusion imaging using arterial spin labeling. NMR Biomed, 7, 75–82.

    Article  CAS  PubMed  Google Scholar 

  52. Calamante,F., Thomas,D.L., Pell,G.S., Wiersma,J., Turner,R. (1999) Measuring cerebral blood flow using magnetic resonance imaging techniques. J. Cereb. Blood Flow Metab, 19, 701–735.

    Article  CAS  PubMed  Google Scholar 

  53. Barbier,E.L., Silva,A.C., Kim,S.G., Koretsky,A.P. (2001) Perfusion imaging using dynamic arterial spin labeling (DASL). Magn. Reson. Med., 45, 1021–1029.

    Article  CAS  PubMed  Google Scholar 

  54. Golay,X., Hendrikse,J., Lim,T.C. (2004) Perfusion imaging using arterial spin labeling. Top. Magn Reson. Imaging, 15, 10–27.

    Article  PubMed  Google Scholar 

  55. Kety,S.S. (1951) The theory and applications of inert gas exchange at the lungs and tissues. Pharmacol. Rev., 3, 1–41.

    CAS  PubMed  Google Scholar 

  56. Kety,S.S. (1985) Regional cerebral blood flow: Estimation by means of nonmetabolized diffusible tracers — an overview. Semin. Nucl. Med., 15, 324–328.

    Article  CAS  PubMed  Google Scholar 

  57. Barbier,E.L., Lamalle,L., Decorps,M. (2001) Methodology of brain perfusion imaging. J Magn Reson Imaging, 13, 496–520.

    Article  CAS  PubMed  Google Scholar 

  58. Detre,J.A., Leigh,J.S., Williams,D.S., Koretsky,A.P. (1992) Perfusion imaging. Magn Reson Med, 23, 37–45.

    Article  CAS  PubMed  Google Scholar 

  59. Williams,D.S., Detre,J.A., Leigh,J.S., Koretsky,A.P. (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A, 89, 212–216.

    Article  CAS  PubMed  Google Scholar 

  60. Edelman,R.R., Siewert,B., Darby,D.G., Thangaraj,V., Nobre,A.C., Mesulam,M.M., Warach,S. (1994) Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology 1994 Aug;192(2):513-, 192, 513–520.

    CAS  Google Scholar 

  61. Kwong,K.K., Chesler,D.A., Weisskoff,R.M., Donahue,K.M., Davis,T.L., Ostergaard,L., Campbell,T.A., Rosen,B.R. (1995) MR perfusion studies with T1-weighted echo planar imaging. Magn. Reson. Med., 34, 878–887.

    Article  CAS  PubMed  Google Scholar 

  62. Kim,S.G. (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: Application to functional mapping. Magn Reson. Med., 34, 293–301.

    Article  CAS  PubMed  Google Scholar 

  63. Wong,E.C., Buxton,R.B., Frank,L.R. (1997) Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed., 10, 237–249.

    Article  CAS  PubMed  Google Scholar 

  64. Wong,E.C., Buxton,R.B., Frank,L.R. (1998) A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging. Magn Reson. Med., 40, 348–355.

    Article  CAS  PubMed  Google Scholar 

  65. Barbier,E.L., Silva,A.C., Kim,H.J., Williams,D.S., Koretsky,A.P. (1999) Perfusion analysis using dynamic arterial spin labeling (DASL). Magn. Reson. Med., 41, 299–308.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang,W., Williams,D.S., Detre,J.A., Koretsky,A.P. (1992) Measurement of brain perfusion by volume-localized NMR spectroscopy using inversion of arterial water spins: Accounting for transit time and cross-relaxation. Magn Reson Med, 25, 362–371.

    Article  CAS  PubMed  Google Scholar 

  67. Silva,A.C., Kim,S.G. (1999) Pseudo-continuous arterial spin labeling technique for measuring CBF dynamics with high temporal resolution. Magn. Reson. Med., 42,425–429.

    Article  CAS  PubMed  Google Scholar 

  68. Gao,J.H., Holland,S.K., Gore,J.C. (1988) Nuclear magnetic resonance signal from flowing nuclei in rapid imaging using gradient echoes. Med. Phys., 15, 809–814.

    Article  CAS  PubMed  Google Scholar 

  69. Iadecola,C. (1993) Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? Trends. Neurosci., 16, 206–214.

    Article  CAS  PubMed  Google Scholar 

  70. Armstrong-James,M., Fox,K., Das-Gupta,A. (1992) Flow of excitation within rat barrel cortex on striking a single vibrissa. J Neurophysiol, 68, 1345–1358.

    CAS  PubMed  Google Scholar 

  71. Paiva,F.F., Tannus,A., Silva,A.C. (2007) Measurement of cerebral perfusion territories using arterial spin labelling. NMR Biomed, 20, 633–642.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by the Intramural Research Program of the NIH, National Institute for Neurological Disorders and Stroke.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Silva, A.C., Paiva, F.F. (2009). Dynamic Magnetic Resonance Imaging of Cerebral Blood Flow Using Arterial Spin Labeling. In: Hyder, F. (eds) Dynamic Brain Imaging. METHODS IN MOLECULAR BIOLOGY™, vol 489. Humana Press. https://doi.org/10.1007/978-1-59745-543-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-543-5_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-74-9

  • Online ISBN: 978-1-59745-543-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics