Dynamic Magnetic Resonance Imaging of Cerebral Blood Flow Using Arterial Spin Labeling

  • Afonso C. Silva
  • Fernando F. Paiva
Part of the METHODS IN MOLECULAR BIOLOGY™ book series (MIMB, volume 489)

Modern functional neuroimaging techniques, including positron emission tomography, optical imaging of intrinsic signals, and magnetic resonance imaging (MRI) rely on a tight coupling between neural activity and cerebral blood flow (CBF) to visualize brain activity using CBF as a surrogate marker. Because the spatial and temporal resolution of neuroimaging modalities is ultimately determined by the spatial and temporal specificity of the underlying hemodynamic signals, characterization of the spatial and temporal profiles of the hemodynamic response to focal brain stimulation is of paramount importance for the correct interpretation and quantification of functional data. The ability to properly measure and quantify CBF with MRI is a major determinant of progress in our understanding of brain function. We review the dynamic arterial spin labeling (DASL) method to measure CBF and the CBF functional response with high temporal resolution.

Key words

Functional magnetic resonance imaging arterial spin labeling animal models cerebral blood flow spatial resolution temporal resolution 


  1. 1.
    Rakic,P. (2002) Evolving concepts of cortical radial and areal specification. Prog Brain Res, 136, 265–280.CrossRefPubMedGoogle Scholar
  2. 2.
    Ogawa,S., Tank,D.W., Menon,R., Ellermann,J.M., Kim,S.G., Merkle,H., Ugurbil,K. (1992) Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A, 89, 5951–5955.CrossRefPubMedGoogle Scholar
  3. 3.
    Phelps,M.E., Mazziotta,J.C., Huang,S.C. (1982) Study of cerebral function with positron computed tomography. J Cereb Blood Flow Metab, 2, 113–162.PubMedGoogle Scholar
  4. 4.
    Lieke,E.E., Frostig,R.D., Arieli,A., Ts’o,D.Y., Hildesheim,R., Grinvald,A. (1989) Optical imaging of cortical activity: Real-time imaging using extrinsic dye-signals and high resolution imaging based on slow intrinsic-signals. Annu Rev Physiol, 51,543–559.CrossRefPubMedGoogle Scholar
  5. 5.
    Villringer,A., Dirnagl,U. (1995) Coupling of brain activity and cerebral blood flow: Basis of functional neuroimaging. Cerebrovasc Brain Metab Rev, 7, 240–276.PubMedGoogle Scholar
  6. 6.
    Lauritzen,M. (2001) Relationship of spikes, synaptic activity, and local changes of cerebral blood flow. J. Cereb. Blood Flow Metab, 21, 1367–1383.CrossRefPubMedGoogle Scholar
  7. 7.
    Attwell,D., Iadecola,C. (2002) The neural basis of functional brain imaging signals. Trends Neurosci, 25, 621–625.CrossRefPubMedGoogle Scholar
  8. 8.
    Iadecola,C. (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat. Rev. Neurosci., 5, 347–360.CrossRefPubMedGoogle Scholar
  9. 9.
    Logothetis,N.K. (2003) The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci, 23, 3963–3971.PubMedGoogle Scholar
  10. 10.
    Lauritzen,M. (2005) Reading vascular changes in brain imaging: Is dendritic calcium the key? Nat Rev Neurosci, 6, 77–85.CrossRefPubMedGoogle Scholar
  11. 11.
    Greenberg,J.H., Hand,P., Sylvestro,A., Reivich,M. (1979) Localized metabolic-flow coupling during functional activity. Acta Neurol. Scand., 60, 12–13.Google Scholar
  12. 12.
    Cox,S.B., Woolsey,T.A., Rovainen,C.M. (1993) Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. J. Cereb. Blood Flow Metab, 13, 899–913.PubMedGoogle Scholar
  13. 13.
    Woolsey,T.A., Rovainen,C.M., Cox,S.B., Henegar,M.H., Liang,G.E., Liu,D., Moskalenko,Y.E., Sui,J., Wei,L. (1996) Neuronal units linked to microvascular modules in cerebral cortex: Response elements for imaging the brain. Cereb Cortex, 6, 647–660.CrossRefPubMedGoogle Scholar
  14. 14.
    Gerrits,R.J., Raczynski,C., Greene,A.S., Stein,E.A. (2000) Regional cerebral blood flow responses to variable frequency whisker stimulation: An autoradiographic analysis. Brain Res, 864, 205–212.CrossRefPubMedGoogle Scholar
  15. 15.
    Ehler,E., Karlhuber,G., Bauer,H.C., Draeger,A. (1995) Heterogeneity of smooth muscle-associated proteins in mammalian brain microvasculature. Cell Tissue Res., 279, 393–403.CrossRefPubMedGoogle Scholar
  16. 16.
    Harrison,R.V., Harel,N., Panesar,J., Mount,R.J. (2002) Blood capillary distribution correlates with hemodynamic-based functional imaging in cerebral cortex. Cereb. Cortex, 12, 225–233.CrossRefPubMedGoogle Scholar
  17. 17.
    Patel,U. (1983) Non-random distribution of blood vessels in the posterior region of the rat somatosensory cortex. Brain Res,289, 65–70.CrossRefPubMedGoogle Scholar
  18. 18.
    Masamoto,K., Kurachi,T., Takizawa,N., Kobayashi,H., Tanishita,K. (2004) Successive depth variations in microvascular distribution of rat somatosensory cortex. Brain Res, 995, 66–75.CrossRefPubMedGoogle Scholar
  19. 19.
    Duong,T.Q., Kim,D.S., Ugurbil,K., Kim,S.G. (2001) Localized cerebral blood flow response at submillimeter columnar resolution. Proc Natl Acad Sci U S A, 98, 10904–10909.CrossRefPubMedGoogle Scholar
  20. 20.
    Narayan,S.M., Santori,E.M., Toga,A.W. (1994) Mapping functional activity in rodent cortex using optical intrinsic signals. Cereb Cortex 1994 Mar-Apr;4(2):195-, 4, 195–204.CrossRefGoogle Scholar
  21. 21.
    Yang,X., Hyder,F., Shulman,R.G. (1996) Activation of single whisker barrel in rat brain localized by functional magnetic resonance imaging. Proc Natl Acad Sci U S A, 93, 475–478.CrossRefPubMedGoogle Scholar
  22. 22.
    Yang,X., Hyder,F., Shulman,R.G. (1997) Functional MRI BOLD signal coincides with electrical activity in the rat whisker barrels. Magn Reson Med, 38, 874–877.CrossRefPubMedGoogle Scholar
  23. 23.
    Kurth,R., Villringer,K., Curio,G., Wolf,K.J., Krause,T., Repenthin,J., Schwiemann,J., Deuchert,M., Villringer,A. (2000) fMRI shows multiple somatotopic digit representations in human primary somatosensory cortex. Neuroreport, 11, 1487–1491.CrossRefPubMedGoogle Scholar
  24. 24.
    Overduin,S.A., Servos,P. (2004) Distributed digit somatotopy in primary somatosensory cortex. Neuroimage, 23, 462–472.CrossRefPubMedGoogle Scholar
  25. 25.
    Kida,I., Xu,F., Shulman,R.G., Hyder,F. (2002) Mapping at glomerular resolution: fMRI of rat olfactory bulb. Magn Reson Med, 48, 570–576.CrossRefPubMedGoogle Scholar
  26. 26.
    Schafer,J.R., Kida,I., Xu,F., Rothman,D.L., Hyder,F. (2006) Reproducibility of odor maps by fMRI in rodents. Neuroimage, 31, 1238–1246.CrossRefPubMedGoogle Scholar
  27. 27.
    Silva,A.C., Lee,S.P., Iadecola,C., Kim,S.G. (2000) Early temporal characteristics of cerebral blood flow and deoxyhemoglobin changes during somatosensory stimulation. J. Cereb. Blood Flow Metab, 20, 201–206.CrossRefPubMedGoogle Scholar
  28. 28.
    Silva,A.C., Koretsky,A.P. (2002) Laminar specificity of functional MRI onset times during somatosensory stimulation in rat. Proc. Natl. Acad. Sci. U. S. A., 99, 15182–15187.CrossRefPubMedGoogle Scholar
  29. 29.
    Lu,H., Patel,S., Luo,F., Li,S.J., Hillard,C.J., Ward,B.D., Hyde,J.S. (2004) Spatial correlations of laminar BOLD and CBV responses to rat whisker stimulation with neuronal activity localized by Fos expression. Magn Reson Med, 52, 1060–1068.CrossRefPubMedGoogle Scholar
  30. 30.
    Bonhoeffer,T., Kim,D.S., Malonek,D., Shoham,D., Grinvald,A. (1995) Optical imaging of the layout of functional domains in area 17 and across the area 17/18 border in cat visual cortex. Eur. J. Neurosci., 7,1973–1988.CrossRefPubMedGoogle Scholar
  31. 31.
    Malonek,D., Grinvald,A. (1996) Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science, 272, 551–554.CrossRefPubMedGoogle Scholar
  32. 32.
    Malonek,D., Dirnagl,U., Lindauer,U., Yamada,K., Kanno,I., Grinvald,A. (1997) Vascular imprints of neuronal activity: Relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation. Proc. Natl. Acad. Sci. U. S. A, 94, 14826–14831.CrossRefPubMedGoogle Scholar
  33. 33.
    Menon,R.S., Ogawa,S., Strupp,J.P., Ugurbil,K. (1997) Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. J Neurophysiol, 77, 2780–2787.PubMedGoogle Scholar
  34. 34.
    Kim,D.S., Duong,T.Q., Kim,S.G. (2000) High-resolution mapping of iso-orientation columns by fMRI. Nat. Neurosci., 3, 164–169.CrossRefPubMedGoogle Scholar
  35. 35.
    Cheng,K., Waggoner,R.A., Tanaka,K. (2001) Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron, 32, 359–374.CrossRefPubMedGoogle Scholar
  36. 36.
    Goodyear,B.G., Menon,R.S. (2001) Brief visual stimulation allows mapping of ocular dominance in visual cortex using fMRI. Hum Brain Mapp, 14, 210–217.CrossRefPubMedGoogle Scholar
  37. 37.
    Goodyear,B.G., Nicolle,D.A., Menon,R.S. (2002) High resolution fMRI of ocular dominance columns within the visual cortex of human amblyopes. Strabismus, 10,129–136.CrossRefPubMedGoogle Scholar
  38. 38.
    Kim,S.G., Duong,T.Q. (2002) Mapping cortical columnar structures using fMRI. Physiol Behav., 77, 641–644.CrossRefPubMedGoogle Scholar
  39. 39.
    Fukuda,M., Moon,C.H., Wang,P., Kim,S.G. (2006) Mapping iso-orientation columns by contrast agent-enhanced functional magnetic resonance imaging: Reproducibility, specificity, and evaluation by optical imaging of intrinsic signal. J Neurosci, 26, 11821–11832.CrossRefPubMedGoogle Scholar
  40. 40.
    Sheth,S.A., Nemoto,M., Guiou,M.W., Walker,M.A., Toga,A.W. (2005) Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity. J Cereb Blood Flow Metab, 25, 830–841.CrossRefPubMedGoogle Scholar
  41. 41.
    Narayan,S.M., Santori,E.M., Toga,A.W. (1994) Mapping functional activity in rodent cortex using optical intrinsic signals. Cereb Cortex 1994 Mar-Apr;4(2):195-, 4, 195–204.CrossRefGoogle Scholar
  42. 42.
    Narayan,S.M., Esfahani,P., Blood,A.J., Sikkens,L., Toga,A.W. (1995) Functional increases in cerebral blood volume over somatosensory cortex. J Cereb Blood Flow Metab, 15, 754–765.PubMedGoogle Scholar
  43. 43.
    Berwick,J., Martin,C., Martindale,J., Jones,M., Johnston,D., Zheng,Y., Redgrave,P., Mayhew,J. (2002) Hemodynamic response in the unanesthetized rat: Intrinsic optical imaging and spectroscopy of the barrel cortex. J. Cereb. Blood Flow Metab, 22, 670–679.CrossRefPubMedGoogle Scholar
  44. 44.
    Martindale,J., Mayhew,J., Berwick,J., Jones,M., Martin,C., Johnston,D., Redgrave,P., Zheng,Y. (2003) The hemodynamic impulse response to a single neural event. J. Cereb. Blood Flow Metab, 23, 546–555.CrossRefPubMedGoogle Scholar
  45. 45.
    Berwick,J., Johnston,D., Jones,M., Martindale,J., Redgrave,P., McLoughlin,N., Schiessl,I., Mayhew,J.E. (2005) Neurovascular coupling investigated with two-dimensional optical imaging spectroscopy in rat whisker barrel cortex. Eur J Neurosci., 22, 1655–1666.CrossRefPubMedGoogle Scholar
  46. 46.
    Narayan,S.M., Santori,E.M., Toga,A.W. (1994) Mapping functional activity in rodent cortex using optical intrinsic signals. Cereb Cortex 1994 Mar-Apr;4(2):195-, 4, 195–204.Google Scholar
  47. 47.
    Friston,K.J., Holmes,A.P., Poline,J.B., Grasby,P.J., Williams,S.C., Frackowiak,R.S., Turner,R. (1995) Analysis of fMRI time-series revisited. Neuroimage., 2, 45–53.CrossRefPubMedGoogle Scholar
  48. 48.
    Boynton,G.M., Engel,S.A., Glover,G.H., Heeger,D.J. (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J. Neurosci., 16, 4207–4221.PubMedGoogle Scholar
  49. 49.
    Aguirre,G.K., Zarahn,E., D’Esposito,M. (1998) The variability of human, BOLD hemodynamic responses. Neuroimage, 8, 360–369.CrossRefPubMedGoogle Scholar
  50. 50.
    de Zwart,J.A., Silva,A.C., van Gelderen,P., Kellman,P., Fukunaga,M., Chu,R., Koretsky,A.P., Frank,J.A., Duyn,J.H. (2005) Temporal dynamics of the BOLD fMRI impulse response. Neuroimage., 24, 667–677.CrossRefPubMedGoogle Scholar
  51. 51.
    Detre,J.A., Zhang,W., Roberts,D.A., Silva,A.C., Williams,D.S., Grandis,D.J., Koretsky,A.P., Leigh,J.S. (1994) Tissue specific perfusion imaging using arterial spin labeling. NMR Biomed, 7, 75–82.CrossRefPubMedGoogle Scholar
  52. 52.
    Calamante,F., Thomas,D.L., Pell,G.S., Wiersma,J., Turner,R. (1999) Measuring cerebral blood flow using magnetic resonance imaging techniques. J. Cereb. Blood Flow Metab, 19, 701–735.CrossRefPubMedGoogle Scholar
  53. 53.
    Barbier,E.L., Silva,A.C., Kim,S.G., Koretsky,A.P. (2001) Perfusion imaging using dynamic arterial spin labeling (DASL). Magn. Reson. Med., 45, 1021–1029.CrossRefPubMedGoogle Scholar
  54. 54.
    Golay,X., Hendrikse,J., Lim,T.C. (2004) Perfusion imaging using arterial spin labeling. Top. Magn Reson. Imaging, 15, 10–27.CrossRefPubMedGoogle Scholar
  55. 55.
    Kety,S.S. (1951) The theory and applications of inert gas exchange at the lungs and tissues. Pharmacol. Rev., 3, 1–41.PubMedGoogle Scholar
  56. 56.
    Kety,S.S. (1985) Regional cerebral blood flow: Estimation by means of nonmetabolized diffusible tracers — an overview. Semin. Nucl. Med., 15, 324–328.CrossRefPubMedGoogle Scholar
  57. 57.
    Barbier,E.L., Lamalle,L., Decorps,M. (2001) Methodology of brain perfusion imaging. J Magn Reson Imaging, 13, 496–520.CrossRefPubMedGoogle Scholar
  58. 58.
    Detre,J.A., Leigh,J.S., Williams,D.S., Koretsky,A.P. (1992) Perfusion imaging. Magn Reson Med, 23, 37–45.CrossRefPubMedGoogle Scholar
  59. 59.
    Williams,D.S., Detre,J.A., Leigh,J.S., Koretsky,A.P. (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A, 89, 212–216.CrossRefPubMedGoogle Scholar
  60. 60.
    Edelman,R.R., Siewert,B., Darby,D.G., Thangaraj,V., Nobre,A.C., Mesulam,M.M., Warach,S. (1994) Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology 1994 Aug;192(2):513-, 192, 513–520.Google Scholar
  61. 61.
    Kwong,K.K., Chesler,D.A., Weisskoff,R.M., Donahue,K.M., Davis,T.L., Ostergaard,L., Campbell,T.A., Rosen,B.R. (1995) MR perfusion studies with T1-weighted echo planar imaging. Magn. Reson. Med., 34, 878–887.CrossRefPubMedGoogle Scholar
  62. 62.
    Kim,S.G. (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: Application to functional mapping. Magn Reson. Med., 34, 293–301.CrossRefPubMedGoogle Scholar
  63. 63.
    Wong,E.C., Buxton,R.B., Frank,L.R. (1997) Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed., 10, 237–249.CrossRefPubMedGoogle Scholar
  64. 64.
    Wong,E.C., Buxton,R.B., Frank,L.R. (1998) A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging. Magn Reson. Med., 40, 348–355.CrossRefPubMedGoogle Scholar
  65. 65.
    Barbier,E.L., Silva,A.C., Kim,H.J., Williams,D.S., Koretsky,A.P. (1999) Perfusion analysis using dynamic arterial spin labeling (DASL). Magn. Reson. Med., 41, 299–308.CrossRefPubMedGoogle Scholar
  66. 66.
    Zhang,W., Williams,D.S., Detre,J.A., Koretsky,A.P. (1992) Measurement of brain perfusion by volume-localized NMR spectroscopy using inversion of arterial water spins: Accounting for transit time and cross-relaxation. Magn Reson Med, 25, 362–371.CrossRefPubMedGoogle Scholar
  67. 67.
    Silva,A.C., Kim,S.G. (1999) Pseudo-continuous arterial spin labeling technique for measuring CBF dynamics with high temporal resolution. Magn. Reson. Med., 42,425–429.CrossRefPubMedGoogle Scholar
  68. 68.
    Gao,J.H., Holland,S.K., Gore,J.C. (1988) Nuclear magnetic resonance signal from flowing nuclei in rapid imaging using gradient echoes. Med. Phys., 15, 809–814.CrossRefPubMedGoogle Scholar
  69. 69.
    Iadecola,C. (1993) Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? Trends. Neurosci., 16, 206–214.CrossRefPubMedGoogle Scholar
  70. 70.
    Armstrong-James,M., Fox,K., Das-Gupta,A. (1992) Flow of excitation within rat barrel cortex on striking a single vibrissa. J Neurophysiol, 68, 1345–1358.PubMedGoogle Scholar
  71. 71.
    Paiva,F.F., Tannus,A., Silva,A.C. (2007) Measurement of cerebral perfusion territories using arterial spin labelling. NMR Biomed, 20, 633–642.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Afonso C. Silva
    • 1
  • Fernando F. Paiva
    • 1
  1. 1.Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and StrokeBethesda

Personalised recommendations