Skip to main content

Generation of Parasite Antigens for Use in Toll-Like Receptor Research

  • Protocol
Book cover Toll-Like Receptors

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 517))

Summary

Pathogen recognition is a central activity of the Toll-like receptor (TLR) family. Molecules from various pathogens have been widely used in TLR research as natural ligands for the receptors. TLR ligands from bacteria, viruses, and fungi are widely available from commercial companies and are increasingly being manufactured with high purity specifically for use in TLR research. Although increasingly used in TLR research, extracts from many parasites with potential TLR ligands are not generally produced commercially. Historically, parasite extracts were produced in academic laboratories for diagnostic or vaccination research, often without an emphasis on quality control. Here we describe methods for isolation of eggs from the human parasite Schistosoma mansoni. We also describe a protocol for generation of S. mansoni soluble egg antigens (SEA), which are commonly used in TLR research. This protocol has application for the isolation of extract from other parasites or pathogens as it is intended to reduce contamination that may cause spurious data in TLR research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yarovinsky, F., D. Zhang, J. F. Andersen, G. L.Bannenberg, C. N. Serhan, M. S. Hayden, S. Hieny, F. S. Sutterwala, R. A. Flavell, S. Ghosh, and A. Sher (2005) TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308, 1626–1629.

    Article  PubMed  CAS  Google Scholar 

  2. Coban, C., K. J. Ishii, T. Kawai, H. Hemmi, S. Sato, S. Uematsu, M. Yamamoto, O. Takeuchi, S. Itagaki, N. Kumar, T. Horii, and S. Akira (2005) Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J. Exp. Med. 201, 19–25.

    Article  PubMed  CAS  Google Scholar 

  3. Parroche, P., F. N. Lauw, N. Goutagny, E. Latz, B. G. Monks, A. Visintin, K. A. Halmen, M. Lamphier, M. Olivier, D. C. Bartholomeu, R. T. Gazzinelli, and D. T. Golenbock (2007) Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc. Natl. Acad. Sci. U. S. A. 104, 1919–1924.

    Article  PubMed  CAS  Google Scholar 

  4. Pearce, E. J., C. M. Kane, and J. Sun (2006) Regulation of dendritic cell function by pathogen-derived molecules plays a key role in dictating the outcome of the adaptive immune response. Chem. Immunol. Allergy 90, 82–90.

    Article  PubMed  CAS  Google Scholar 

  5. Fallon, P. G. (2000) Immunopathology of schistosomiasis: a cautionary tale of mice and men. Immunol. Today 21, 29–35.

    Article  PubMed  CAS  Google Scholar 

  6. Hirschfeld, M., Y. Ma, J. H. Weis, S. N. Vogel, and J. J. Weis (2000) Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J. Immunol. 165, 618–622.

    PubMed  CAS  Google Scholar 

  7. Lewis, F. (1998) Schistosomiasis. Curr. Prot. Immunol. 28, 19.11.11–18.

    Google Scholar 

  8. Mangan, N. E., N. van Rooijen, A. N. McKenzie, and P. G. Fallon. (2006) Helminth-modified pulmonary immune response protects mice from allergen-induced airway hyperresponsiveness. J. Immunol. 176, 138–147.

    PubMed  CAS  Google Scholar 

  9. Valentinis, B., A. Bianchi, D. Zhou, A. Cipponi, F. Catalanotti, V. Russo, and C. Traversari. (2005) Direct effects of polymyxin B on human dendritic cells maturation. The role of IkappaB-alpha/NF-kappaB and ERK1/2 pathways and adhesion. J. Biol. Chem. 280, 14264–14271.

    Article  PubMed  CAS  Google Scholar 

  10. Salio, M., V. Cerundolo, and A. Lanzavecchia. (2000) Dendritic cell maturation is induced by mycoplasma infection but not by necrotic cells. Eur. J. Immunol. 30, 705–708.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Many of the methods described here were adapted from techniques developed in Mike Doenhoff’s or David Dunne’s groups. Padraic Fallon thanks both for their support and mentorship over the years. Authors are supported by Science Foundation Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padraic G. Fallon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Smith, P., Mangan, N.E., Fallon, P.G. (2009). Generation of Parasite Antigens for Use in Toll-Like Receptor Research. In: McCoy, C.E., O’Neill, L.A.J. (eds) Toll-Like Receptors. Methods in Molecular Biology™, vol 517. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-541-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-541-1_24

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-72-5

  • Online ISBN: 978-1-59745-541-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics