Skip to main content

Exploiting Yeast Genetics to Inform Therapeutic Strategies for Huntington’s Disease

  • Protocol
  • First Online:
Yeast Functional Genomics and Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 548))

Summary

Huntington’s disease (HD) is a devastating neurodegenerative disorder that is inherited in an autosomal dominant fashion and is caused by a polyglutamine expansion in the protein huntingtin (htt). In recent years, modeling of various aspects of HD in the yeast Saccharomyces cerevisiae has provided insight into the conserved mechanisms of mutant htt toxicity in eukaryotic cells. The high degree of conservation of cellular and molecular processes between yeast and mammalian cells have made it a valuable system for studying basic mechanisms underlying human disease. Yeast models of HD recapitulate conserved disease-relevant phenotypes and can be used for drug discovery efforts as well as to gain mechanistic and genetic insights into candidate drugs. Here we provide a detailed overview of yeast models of mutant htt misfolding and toxicity and the molecular and phenotypic characterization of these models. We also review how these models identified novel therapeutic targets and compounds for HD and discuss the benefits and limitations of this model genetic system. Finally, we discuss how yeast may be used to provide further insight into the molecular and cellular mechanisms underlying HD and treatment strategies for this devastating disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 1993;72(6):971–83.

    Google Scholar 

  2. Botstein D, Fink GR. Yeast: an experimental organism for modern biology. Science 1988;240(4858):1439–43.

    Article  PubMed  CAS  Google Scholar 

  3. Fields S, Johnston M. Cell biology. Whither model organism research. Science 2005;307(5717):1885–6.

    Article  PubMed  CAS  Google Scholar 

  4. Hartwell LH. Nobel Lecture. Yeast and cancer. Biosci Rep 2002;22(3–4):373–94.

    Article  PubMed  CAS  Google Scholar 

  5. Nurse PM. Nobel Lecture. Cyclin dependent kinases and cell cycle control. Biosci Rep 2002;22(5–6):487–99.

    Article  PubMed  CAS  Google Scholar 

  6. Goffeau A, Barrell BG, Bussey H, et al. Life with 6000 genes. Science 1996;274(5287):546,63–7.

    Article  PubMed  CAS  Google Scholar 

  7. Sherman F. Getting started with yeast. In: Guthrie CaF, G.R. (Eds), Methods Enzymol 1991;194:3–21.

    Google Scholar 

  8. Martin JB, Gusella JF. Huntington’s disease. Pathogenesis and management. N Engl J Med 1986;315(20):1267–76.

    Article  PubMed  CAS  Google Scholar 

  9. Harper PS. The epidemiology of Huntington’s disease. In: Bates G, Harper PS, Jones L, eds. Huntington’s Disease. Oxford, UK: Oxford University Press; 2002:159–97.

    Google Scholar 

  10. Kremer B. Clinical neurology of Huntington’s disease. In: Bates G, Harper PS, Jones L, eds. Huntington’s disease. Oxford: Oxford University Press; 2002:28–61.

    Google Scholar 

  11. Rubinsztein DC, Leggo J, Coles R, et al. Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats. Am J Hum Genet 1996;59(1):16–22.

    PubMed  CAS  Google Scholar 

  12. Myers RH, Marans KS, MacDonald ME. Genetic Instabilities and Hereditary Neurological Diseases. In: Wells RD, Warren ST, eds. San Diego: Academic Press; 1998:301–23.

    Google Scholar 

  13. Duyao M, Ambrose C, Myers R, et al. Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet 1993;4(4):387–92.

    Article  PubMed  CAS  Google Scholar 

  14. Telenius H, Kremer HP, Theilmann J, et al. Molecular analysis of juvenile Huntington disease: the major influence on (CAG)n repeat length is the sex of the affected parent. Hum Mol Genet 1993;2(10):1535–40.

    Article  PubMed  CAS  Google Scholar 

  15. Wexler NS, Lorimer J, Porter J, et al. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci U S A 2004;101(10):3498–503.

    Article  PubMed  CAS  Google Scholar 

  16. Gutekunst CA, Norflus F, Hersch SM. The neuropathology of Huntington’s disease. In: Bates G, Harper PS, Jones L, eds. Huntington’s disease. Oxford: Oxford University Press; 2002:251–75.

    Google Scholar 

  17. Scherzinger E, Lurz R, Turmaine M, et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 1997;90(3):549–58.

    Article  PubMed  CAS  Google Scholar 

  18. Davies SW, Turmaine M, Cozens BA, et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997;90(3):537–48.

    Article  PubMed  CAS  Google Scholar 

  19. DiFiglia M, Sapp E, Chase KO, et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystropic neurites in brain. Science 1997;277(5334):1990–3.

    Article  PubMed  CAS  Google Scholar 

  20. Rockabrand E, Slepko N, Pantalone A, et al. The first 17 amino acids of Huntingtin modulate its sub-cellular localization, aggregation and effects on calcium homeostasis. Hum Mol Genet 2007;16(1):61–77.

    Article  PubMed  CAS  Google Scholar 

  21. Atwal RS, Xia J, Pinchev D, Taylor J, Epand RM, Truant R. Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum Mol Genet 2007;16(21):2600–15.

    Article  PubMed  CAS  Google Scholar 

  22. Khoshnan A, Ko J, Patterson PH. Effects of intracellular expression of anti-huntingtin antibodies of various specificities on mutant huntingtin aggregation and toxicity. Proc Natl Acad Sci U S A 2002;99(2):1002–7.

    Article  PubMed  CAS  Google Scholar 

  23. Qin ZH, Wang Y, Sapp E, et al. Huntingtin bodies sequester vesicle-associated proteins by a polyproline-dependent interaction. J Neurosci 2004;24(1):269–81.

    Article  PubMed  CAS  Google Scholar 

  24. Bhattacharyya A, Thakur AK, Chellgren VM, et al. Oligoproline effects on polyglutamine conformation and aggregation. J Mol Biol 2006;355(3):524–35.

    Article  PubMed  CAS  Google Scholar 

  25. Dehay B, Bertolotti A. Critical role of the proline-rich region in Huntingtin for aggregation and cytotoxicity in yeast. J Biol Chem 2006;281(47):35608–15.

    Article  PubMed  CAS  Google Scholar 

  26. Suopanki J, Gotz C, Lutsch G, et al. Interaction of huntingtin fragments with brain membranes–clues to early dysfunction in Huntington’s disease. J Neurochem 2006;96(3):870–84.

    Article  PubMed  CAS  Google Scholar 

  27. Duennwald ML, Jagadish S, Muchowski PJ, Lindquist S. Flanking sequences profoundly alter polyglutamine toxicity in yeast. Proc Natl Acad Sci U S A 2006;103(29):11045–50.

    Article  PubMed  CAS  Google Scholar 

  28. Duennwald ML, Jagadish S, Giorgini F, Muchowski PJ, Lindquist S. A network of protein interactions determines polyglutamine toxicity. Proc Natl Acad Sci U S A 2006;103(29):11051–6.

    Article  PubMed  CAS  Google Scholar 

  29. Andrade MA, Bork P. HEAT repeats in the Huntington’s disease protein. Nat Genet 1995;11(2):115–6.

    Article  PubMed  CAS  Google Scholar 

  30. Harjes P, Wanker EE. The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem Sci 2003;28(8):425–33.

    Article  PubMed  CAS  Google Scholar 

  31. Bates GP. History of genetic disease: the molecular genetics of Huntington disease – a history. Nat Rev Genet 2005;6(10):766–73.

    Article  PubMed  CAS  Google Scholar 

  32. Li SH, Li XJ. Huntingtin-protein interactions and the pathogenesis of Huntington’s disease. Trends Genet 2004;20(3):146–54.

    Article  PubMed  Google Scholar 

  33. Outeiro TF, Muchowski PJ. Molecular genetics approaches in yeast to study amyloid diseases. J Mol Neurosci 2004;23(1–2):49–60.

    Article  PubMed  CAS  Google Scholar 

  34. Outeiro TF, Giorgini F. Yeast as a drug discovery platform in Huntington’s and Parkinson’s diseases. Biotechnol J 2006;1(3):258–69.

    Article  PubMed  CAS  Google Scholar 

  35. Uptain SM, Lindquist S. Prions as protein-based genetic elements. Annu Rev Microbiol 2002;56:703–41.

    Article  PubMed  CAS  Google Scholar 

  36. Chien P, Weissman JS, DePace AH. Emerging principles of conformation-based prion inheritance. Annu Rev Biochem 2004;73:617–56.

    Article  PubMed  CAS  Google Scholar 

  37. Willingham S, Outeiro TF, DeVit MJ, Lindquist SL, Muchowski PJ. Yeast genes that enhance the toxicity of a mutant huntingtin fragment or alpha-synuclein. Science 2003;302(5651):1769–72.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang X, Smith DL, Meriin AB, et al. A potent small molecule inhibits polyglutamine aggregation in Huntington’s disease neurons and suppresses neurodegeneration in vivo. Proc Natl Acad Sci U S A 2005;102(3):892–7.

    Article  PubMed  CAS  Google Scholar 

  39. Giorgini F, Guidetti P, Nguyen Q, Bennett SC, Muchowski PJ. A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat Genet 2005;37(5):526–31.

    Article  PubMed  CAS  Google Scholar 

  40. Puccio H, Koenig M. Recent advances in the molecular pathogenesis of Friedreich ataxia. Hum Mol Genet 2000;9(6):887–92.

    Article  PubMed  CAS  Google Scholar 

  41. Madeo F, Herker E, Wissing S, Jungwirth H, Eisenberg T, Frohlich KU. Apoptosis in yeast. Curr Opin Microbiol 2004;7(6):655–60.

    Article  PubMed  CAS  Google Scholar 

  42. Sokolov S, Pozniakovsky A, Bocharova N, Knorre D, Severin F. Expression of an expanded polyglutamine domain in yeast causes death with apoptotic markers. Biochim Biophys Acta 2006;1757(5–6):660–6.

    PubMed  CAS  Google Scholar 

  43. Flower TR, Chesnokova LS, Froelich CA, Dixon C, Witt SN. Heat shock prevents alpha-synuclein-induced apoptosis in a yeast model of Parkinson’s disease. J Mol Biol 2005;351(5):1081–100.

    Article  PubMed  CAS  Google Scholar 

  44. Krobitsch S, Lindquist S. Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc Natl Acad Sci U S A 2000;97(4):1589–94.

    Article  PubMed  CAS  Google Scholar 

  45. Muchowski PJ, Schaffar G, Sittler A, Wanker EE, Hayer-Hartl MK, Hartl FU. Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc Natl Acad Sci U S A 2000;97(14):7841–6.

    Article  PubMed  CAS  Google Scholar 

  46. Meriin AB, Zhang X, He X, Newnam GP, Chernoff YO, Sherman MY. Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J Cell Biol 2002;157(6):997–1004.

    Article  PubMed  CAS  Google Scholar 

  47. Hughes RE, Lo RS, Davis C, et al. Altered transcription in yeast expressing expanded polyglutamine. Proc Natl Acad Sci U S A 2001;98(23):13201–6.

    Article  PubMed  CAS  Google Scholar 

  48. Tam S, Geller R, Spiess C, Frydman J. The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat Cell Biol 2006;8(10):1155–62.

    Article  PubMed  CAS  Google Scholar 

  49. Meriin AB, Zhang X, Miliaras NB, et al. Aggregation of expanded polyglutamine domain in yeast leads to defects in endocytosis. Mol Cell Biol 2003;23(21):7554–65.

    Article  PubMed  CAS  Google Scholar 

  50. Meriin AB, Zhang X, Alexandrov IM, et al. Endocytosis machinery is involved in aggregation of proteins with expanded polyglutamine domains. Faseb J 2007;21(8):1915–25.

    Article  PubMed  CAS  Google Scholar 

  51. Muchowski PJ, Ning K, D’Souza-Schorey C, Fields S. Requirement of an intact microtubule cytoskeleton for aggregation and inclusion body formation by a mutant huntingtin fragment. Proc Natl Acad Sci U S A 2002;99(2):727–32.

    Article  PubMed  CAS  Google Scholar 

  52. Solans A, Zambrano A, Rodriguez M, Barrientos A. Cytotoxicity of a mutant huntingtin fragment in yeast involves early alterations in mitochondrial OXPHOS complexes II and III. Hum Mol Genet 2006;15(20):3063–81.

    Article  PubMed  CAS  Google Scholar 

  53. Schwarcz R. The kynurenine pathway of tryptophan degradation as a drug target. Curr Opin Pharmacol 2004;4(1):12–7.

    Article  PubMed  CAS  Google Scholar 

  54. Panozzo C, Nawara M, Suski C, et al. Aerobic and anaerobic NAD+ metabolism in Saccharomyces cerevisiae. FEBS Lett 2002;517(1–3):97–102.

    Article  PubMed  CAS  Google Scholar 

  55. Ehrnhoefer DE, Duennwald M, Markovic P, et al. Green tea (-)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum Mol Genet 2006;15(18):2743–51.

    Article  PubMed  CAS  Google Scholar 

  56. Giaever G, Chu AM, Ni L, et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 2002;418(6896):387–91.

    Article  PubMed  CAS  Google Scholar 

  57. Winzeler EA, Shoemaker DD, Astromoff A, et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 1999;285(5429):901–6.

    Article  PubMed  CAS  Google Scholar 

  58. Hansson O, Nylandsted J, Castilho RF, Leist M, Jaattela M, Brundin P. Overexpression of heat shock protein 70 in R6/2 Huntington’s disease mice has only modest effects on disease progression. Brain Res 2003;970(1–2):47–57.

    Article  PubMed  CAS  Google Scholar 

  59. Hay DG, Sathasivam K, Tobaben S, et al. Progressive decrease in chaperone protein levels in a mouse model of Huntington’s disease and induction of stress proteins as a therapeutic approach. Hum Mol Genet 2004;13(13):1389–405.

    Article  PubMed  CAS  Google Scholar 

  60. Ravikumar B, Vacher C, Berger Z, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 2004;36(6):585–95.

    Article  PubMed  CAS  Google Scholar 

  61. Botstein D, Chervitz SA, Cherry JM. Yeast as a model organism. Science 1997;277(5330):1259–60.

    Article  PubMed  CAS  Google Scholar 

  62. Chopra V, Fox JH, Lieberman G, et al. A small-molecule therapeutic lead for Huntington’s disease: preclinical pharmacology and efficacy of C2-8 in the R6/2 transgenic mouse. Proc Natl Acad Sci U S A 2007;104(42):16685–89.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Muchowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Giorgini, F., Muchowski, P.J. (2009). Exploiting Yeast Genetics to Inform Therapeutic Strategies for Huntington’s Disease. In: Stagljar, I. (eds) Yeast Functional Genomics and Proteomics. Methods in Molecular Biology, vol 548. Humana Press. https://doi.org/10.1007/978-1-59745-540-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-540-4_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-71-8

  • Online ISBN: 978-1-59745-540-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics