Skip to main content

A Genomic Approach to Yeast Chronological Aging

  • Protocol
  • First Online:
Yeast Functional Genomics and Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 548))

Summary

Yeast is a useful model organism to study the genetic and biochemical mechanisms of aging. Genomic studies of aging in yeast have been limited, however, by traditional methodologies that require a large investment of labor and resources. In this chapter, we describe a newly-developed method for quantitatively measuring the chronological life span of each strain contained in the yeast ORF deletion collection. Our approach involves determining population survival by monitoring outgrowth kinetics using a Bioscreen C MBR shaker/incubator/plate reader. This method has accuracy comparable to traditional assays, while allowing for higher throughput and decreased variability in measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaeberlein, M. (2006). In Handbook of models for human aging. (Conn, P. M., Ed.), Elsevier Press, Boston, pp. 109–120.

    Chapter  Google Scholar 

  2. Mortimer, R. K., and Johnston, J. R. (1959). Life span of individual yeast cells. Nature. 183, 1751–1752.

    Article  PubMed  CAS  Google Scholar 

  3. Fabrizio, P., and Longo, V. D. (2003). The chronological life span of Saccharomyces cerevisiae. Aging Cell. 2, 73–81.

    Article  PubMed  CAS  Google Scholar 

  4. Kaeberlein, M. (2006). Genome-wide approaches to understanding human ageing. Hum Genomics. 2, 422–428.

    PubMed  CAS  Google Scholar 

  5. Jiang, J. C., Jaruga, E., Repnevskaya, M. V., and Jazwinski, S. M. (2000). An intervention resembling caloric restriction prolongs life span and retards aging in yeast. Faseb J. 14, 2135–2137.

    PubMed  CAS  Google Scholar 

  6. Kaeberlein, M., Kirkland, K. T., Fields, S., and Kennedy, B. K. (2004). Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol. 2, E296.

    Article  PubMed  Google Scholar 

  7. Lin, S. J., Defossez, P. A., and Guarente, L. (2000). Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science. 289, 2126–2128.

    Article  PubMed  CAS  Google Scholar 

  8. Fabrizio, P., Gattazzo, C., Battistella, L., Wei, M., Cheng, C., McGrew, K., and Longo, V. D. (2005). Sir2 blocks extreme life-span extension. Cell. 123, 655–667.

    Article  PubMed  CAS  Google Scholar 

  9. Smith Jr, D. L., McClure, J. M., Matecic, M., and Smith, J. S. (2007). Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins. Aging Cell. 6, 649–62.

    Article  Google Scholar 

  10. Powers, R. W., 3rd, Kaeberlein, M., Caldwell, S. D., Kennedy, B. K., and Fields, S. (2006). Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev. 20, 174–184.

    Article  PubMed  CAS  Google Scholar 

  11. Kaeberlein, M., Powers, R. W., 3rd, Steffen, K. K., Westman, E. A., Hu, D., Dang, N., Kerr, E. O., Kirkland, K. T., Fields, S., and Kennedy, B. K. (2005). Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science. 310, 1193–1196.

    Article  PubMed  CAS  Google Scholar 

  12. Kaeberlein, M., McVey, M., and Guarente, L. (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580.

    Article  PubMed  CAS  Google Scholar 

  13. Fabrizio, P., Liou, L. L., Moy, V. N., Diaspro, A., SelverstoneValentine, J., Gralla, E. B., and Longo, V. D. (2003). SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics. 163, 35–46.

    PubMed  CAS  Google Scholar 

  14. Fabrizio, P., Pletcher, S. D., Minois, N., Vaupel, J. W., and Longo, V. D. (2004). Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. FEBS Lett. 557, 136–142.

    Article  PubMed  CAS  Google Scholar 

  15. Fabrizio, P., Pozza, F., Pletcher, S. D., Gendron, C. M., and Longo, V. D. (2001). Regulation of longevity and stress resistance by Sch9 in yeast. Science. 292, 288–290.

    Article  PubMed  CAS  Google Scholar 

  16. Kaeberlein, M., Burtner, C. R., and Kennedy, B. K. (2007). Recent developments in yeast aging. PLoS Genet. 3, e84.

    Article  PubMed  Google Scholar 

  17. Kaeberlein, M., and Kennedy, B. K. (2005). Large-scale identification in yeast of conserved ageing genes. Mech Ageing Dev. 126, 17–21.

    Article  PubMed  CAS  Google Scholar 

  18. Malathi, K., Higaki, K., Tinkelenberg, A. H., Balderes, D. A., Almanzar-Paramio, D., Wilcox, L. J., Erdeniz, N., Redican, F., Padamsee, M., Liu, Y., Khan, S., Alcantara, F., Carstea, E. D., Morris, J. A., and Sturley, S. L. (2004). Mutagenesis of the putative sterol-sensing domain of yeast Niemann Pick C-related protein reveals a primordial role in subcellular sphingolipid distribution. J Cell Biol. 164, 547–556.

    Article  PubMed  CAS  Google Scholar 

  19. Tsuchiya, M., Dang, N., Kerr, E. O., Hu, D., Steffen, K. K., Oakes, J. A., Kennedy, B. K., and Kaeberlein, M. (2006). Sirtuin-independent effects of nicotinamide on lifespan extension from calorie restriction in yeast. Aging Cell. 5, 505–514.

    Article  PubMed  CAS  Google Scholar 

  20. Murakami, C. J., Burtner, C. R., Kennedy, B. K., and Kaeberlein, M. (2008). A method for high-throughput quantitative analysis of yeast chronological life span. J Gerontol A Biol Sci Med Sci. 63, 113–21.

    Article  PubMed  Google Scholar 

  21. Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Benito, R., Boeke, J. D., Bussey, H., Chu, A. M., Connelly, C., Davis, K., Dietrich, F., Dow, S. W., El Bakkoury, M., Foury, F., Friend, S. H., Gentalen, E., Giaever, G., Hegemann, J. H., Jones, T., Laub, M., Liao, H., Davis, R. W., and et al (1999). Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 285, 901–906.

    Article  PubMed  CAS  Google Scholar 

  22. Fabrizio, P., Battistella, L., Vardavas, R., Gattazzo, C., Liou, L. L., Diaspro, A., Dossen, J. W., Gralla, E. B., and Longo, V. D. (2004). Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol. 166, 1055–1067.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The development of the method described here was supported by a pilot project grant to MK from the University of Washington Nathan Shock Center for Excellence in the Basic Biology of Aging Grant 5P30 AG013280. CRB is supported by National Institutes of Health Training Grant 5P30 AG013280.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Kaeberlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Burtner, C.R., Murakami, C.J., Kaeberlein, M. (2009). A Genomic Approach to Yeast Chronological Aging. In: Stagljar, I. (eds) Yeast Functional Genomics and Proteomics. Methods in Molecular Biology, vol 548. Humana Press. https://doi.org/10.1007/978-1-59745-540-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-540-4_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-71-8

  • Online ISBN: 978-1-59745-540-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics