Skip to main content

Whole-Genome Genotyping on Bead Arrays

  • Protocol
  • First Online:
DNA Microarrays for Biomedical Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 529))

Abstract

In this review, we describe the laboratory implementation of Infinium® whole genome genotyping (WGG) technology for whole genome association studies and copy number studies. Briefly, the Infinium WGG assay employs a single tube whole genome amplification reaction to amplify the entire genome; genomic loci of interest are captured on an array by specific hybridization of picomolar concentrations amplified gDNA. After target capture, single nucleotide polymorphisms (SNPs) are genotyped on the array by a primer extension reaction using hapten-labeled nucleotides. The resultant hapten signal is amplified by immunhistochemical sandwich staining and the array is read out on a high resolution confocal scanner. We have combined this Infinium assay with high-density BeadChips to create the first array platform capable of genotyping over 1 million SNPs per slide. Additionally, the complete Infinium assay is automated using Tecan GenePaintTM slide processing system. Hybridization, washing, array-based primer extension and staining are performed directly in the Tecan capillary gap Te-Flow Through chambers. This automation process greatly increases assay robustness and throughput while enabling Laboratory Information Management System (LIMS) control of sample tracking. Finally, we give several examples of how this advance in genotyping technology is being applied in whole genome association and copy number studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Risch, N., and Merikangas, K. (1996) The future of genetic studies of complex human diseases. Science 273, 1516–7.

    Article  PubMed  CAS  Google Scholar 

  2. Fan, J. B., Chee, M. S., and Gunderson, K. L. (2006) Highly parallel genomic assays. Nat Rev Genet 7, 632–44.

    Article  PubMed  CAS  Google Scholar 

  3. Carlson, C. S., Eberle, M. A., Rieder, M. J., Yi, Q., Kruglyak, L., and Nickerson, D. A. (2004) Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 74, 106–20.

    Article  PubMed  CAS  Google Scholar 

  4. Consortium, T. I. H. (2003) The International HapMap Project. Nature 426, 789–96.

    Article  Google Scholar 

  5. Gunderson, K. L., Steemers, F. J., Lee, G., Mendoza, L. G., and Chee, M. S. (2005) A genome-wide scalable SNP genotyping assay using microarray technology. Nat Genet 37, 549–54.

    Article  PubMed  CAS  Google Scholar 

  6. Gunderson, K. L., Kruglyak, S., Graige, M. S., Garcia, F., Kermani, B. G., Zhao, C., Che, D., Dickinson, T., Wickham, E., Bierle, J., Doucet, D., Milewski, M., Yang, R., Siegmund, C., Haas, J., Zhou, L., Oliphant, A., Fan, J. B., Barnard, S., and Chee, M. S. (2004) Decoding randomly ordered DNA arrays. Genome Res 14, 870–7.

    Article  PubMed  CAS  Google Scholar 

  7. Shumaker, J. M., Metspalu, A., and Caskey, C. T. (1996) Mutation detection by solid phase primer extension. Hum Mutat 7, 346–54.

    Article  PubMed  CAS  Google Scholar 

  8. Pastinen, T., Kurg, A., Metspalu, A., Peltonen, L., and Syvanen, A. C. (1997) Minisequencing: a specific tool for DNA analysis and diagnostics on oligonucleotide arrays. Genome Res 7, 606–14.

    PubMed  CAS  Google Scholar 

  9. Pastinen, T., Raitio, M., Lindroos, K., Tainola, P., Peltonen, L., and Syvanen, A. C. (2000) A system for specific, high-throughput genotyping by allele-specific primer extension on microarrays. Genome Res 10, 1031–42.

    Article  PubMed  CAS  Google Scholar 

  10. Steemers, F., Chang, W., Lee, G., Shen, R., Barker, D. L., and Gunderson, K. L. (2006) Whole genome genotyping (WGG) using single base extension (SBE). Nat Methods 3(1), 31–3.

    Google Scholar 

  11. Patil, N., Berno, A. J., Hinds, D. A., Barrett, W. A., Doshi, J. M., Hacker, C. R., Kautzer, C. R., Lee, D. H., Marjoribanks, C., McDonough, D. P., Nguyen, B. T., Norris, M. C., Sheehan, J. B., Shen, N., Stern, D., Stokowski, R. P., Thomas, D. J., Trulson, M. O., Vyas, K. R., Frazer, K. A., Fodor, S. P., and Cox, D. R. (2001) Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294, 1719–23.

    Article  PubMed  CAS  Google Scholar 

  12. Gabriel, S. B., Schaffner, S. F., Nguyen, H., Moore, J. M., Roy, J., Blumenstiel, B., Higgins, J., DeFelice, M., Lochner, A., Faggart, M., Liu-Cordero, S. N., Rotimi, C., Adeyemo, A., Cooper, R., Ward, R., Lander, E. S., Daly, M. J., and Altshuler, D. (2002) The structure of haplotype blocks in the human genome. Science 296, 2225–9.

    Article  PubMed  CAS  Google Scholar 

  13. Johnson, G. C., Esposito, L., Barratt, B. J., Smith, A. N., Heward, J., Di Genova, G., Ueda, H., Cordell, H. J., Eaves, I. A., Dudbridge, F., Twells, R. C., Payne, F., Hughes, W., Nutland, S., Stevens, H., Carr, P., Tuomilehto-Wolf, E., Tuomilehto, J., Gough, S. C., Clayton, D. G., and Todd, J. A. (2001) Haplotype tagging for the identification of common disease genes. Nat Genet 29, 233–7.

    Article  PubMed  CAS  Google Scholar 

  14. Galinsky, V. L. (2003) Automatic registration of microarray images. II. Hexagonal grid. Bioinformatics 19, 1832–6.

    Article  PubMed  CAS  Google Scholar 

  15. Galinsky, V. L. (2003) Automatic registration of microarray images. I. Rectangular grid. Bioinformatics 19, 1824–31.

    Article  PubMed  CAS  Google Scholar 

  16. Peiffer, D. A., Le, J. M., Steemers, F. J., Chang, W., Jenniges, T., Garcia, F., Haden, K., Li, J., Shaw, C. A., Belmont, J., Cheung, S. W., Shen, R. M., Barker, D. L., and Gunderson, K. L. (2006) High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res 16, 1136–48.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The technology development summarized here would not have been possible without the efforts of many dedicated individuals. We would like to thank the people at Illumina for their valuable contributions in molecular biology, automation, oligonucleotide synthesis, chemistry, engineering, bioinformatics, software, manufacturing, and process development. Special thanks go to John Stuelpnagel, Cynthia Allred, and Rose Espejo for careful reading of the manuscript. The WGG research was funded, in part, by grants from the NIH/NCI.

Illumina, Solexa, Making Sense Out of Life, Oligator, Sentrix, GoldenGate, DASL, BeadArray, Array of Arrays, Infinium, BeadXpress, VeraCode, IntelliHyb, iSelect, and CSPro are registered trademarks or trademarks of Illumina. All other brands and names contained herein are the property of their respective owners.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gunderson, K.L. (2009). Whole-Genome Genotyping on Bead Arrays. In: Dufva, M. (eds) DNA Microarrays for Biomedical Research. Methods in Molecular Biology, vol 529. Humana Press. https://doi.org/10.1007/978-1-59745-538-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-538-1_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-69-5

  • Online ISBN: 978-1-59745-538-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics