Skip to main content

The Roboocyte

Automated Electrophysiology Based on Xenopus Oocytes

  • Protocol
Patch-Clamp Methods and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 403))

Summary

Automated electrophysiological assays are of great importance for modern drug discovery, and various approaches have been developed into practical devices. Here, we describe the automation of two-electrode voltage-clamp (TEVC) recording from Xenopus oocytes using the Roboocyte automated workstation, jointly developed by Multi Channel Systems and Bayer Technology Services. We briefly discuss the technology, including its advantages and limitations relative to patch clamp and other TEVC systems. We provide a step-by-step description of typical operating procedures and show that the Roboocyte represents a practical and highly effective way to perform automated electrophysiology in an industrial setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gurdon J.B., Lane C.D., Woodland H.R., and Marbaix G. (1971) Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 233, 177–182.

    Article  CAS  PubMed  Google Scholar 

  2. Barnard E.A., Miledi R., and Sumikawa K. (1982) Translation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes. Proc. R. Soc. Lond. B 215, 241–246.

    Google Scholar 

  3. Gundersen C.B., Miledi R., and Parker I. (1984) Messenger RNA from human brain induces drug- and voltage-operated channels in Xenopus oocytes. Nature 308, 421–424.

    Article  CAS  PubMed  Google Scholar 

  4. Gurdon J.B. and Melton D.A. (1981) Gene transfer in amphibian eggs and oocytes. Ann. Rev. Genet. 15, 189–218.

    Article  CAS  PubMed  Google Scholar 

  5. Bertrand D., Cooper E., Valera S., Rungger D., and Ballivet M. (1991) Electrophysiology of neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes following nuclear injection of genes or cDNAs. in: Conn, M. (ed.) Methods in Neurosciences, Vol. 4. Academic Press, New York 174–193.

    Google Scholar 

  6. Hodgkin, A.L., Huxley A.F., and Katz, B. (1952) Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116, 424–448.

    CAS  PubMed  Google Scholar 

  7. Schulz R., Bertrand S., Chamaon K., Smalla K.H., Gundelfinger E.D., and Bertrand D. (2000) Neuronal nicotinic acetylcholine receptors from Drosophila: two different types of α-subunits coassemble within the same receptor complex. J. Neurochem. 74, 2537–2546.

    Article  CAS  PubMed  Google Scholar 

  8. Schnizler K., Kuester M., Methfessel C., and Fejtl M. (2003) The Roboocyte: automated cDNA/mRNA injection and subsequent TEVC recording on Xenopus oocytes in 96-well microtiter plates. Receptors Channels 9, 41–48.

    Article  CAS  PubMed  Google Scholar 

  9. Pehl U., Leisgen C., Gampe K., and Guenther E. (2004) Automated higher-throughput compound screening on ion channel targets based on the Xenopus laevis oocyte expression system. Assay Drug Dev. Technol. 2, 515–524.

    CAS  PubMed  Google Scholar 

  10. Schroeder, J.I. (1994) Heterologous expression and functional analysis of higher plant transport proteins in Xenopus oocytes. (M. Montal, ed.) Methods: A Companion to Methods in Enzymology 6, 70–81.

    Article  CAS  Google Scholar 

  11. Sakmann B., Methfessel C., Mishina M., Takahashi T., Takai T., Kurasaki M., Fukuda K., and Numa S. (1985) Role of acetylcholine receptor subunits in gating of the channel. Nature 318, 538–543.

    Article  CAS  PubMed  Google Scholar 

  12. Sine S.M. and Claudio T. (1991). Stable expression of the mouse nicotinic acetylcholine receptor in mouse fibroblasts. J. Biol. Chem. 266, 13679–13689.

    CAS  PubMed  Google Scholar 

  13. Takahashi T., Neher E., and Sakmann B. (1987) Rat brain serotonin receptors in Xenopus oocytes are coupled by intracellular calcium to endogenous channels. Proc. Natl. Acad. Sci. U.S.A. 84, 5063–5067.

    Article  CAS  PubMed  Google Scholar 

  14. Sharon D., Vorobiov D., and Dascal N. (1997). Positive and negative coupling of the metabotropic glutamate receptors to a G protein activated K+ channel, GIRK, in Xenopus oocytes. J. Gen. Physiol. 109, 477–490.

    Article  CAS  PubMed  Google Scholar 

  15. Mishina M., Takai T., Imoto K., Noda M., Takahashi T., Numa S., Methfessel C., and Sakmann B. (1986) Molecular distinction between fetal and adult forms of the muscle acetylcholine receptor. Nature 321, 406–411.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Peter Molnar James J. Hickman

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Leisgen, C., Kuester, M., Methfessel, C. (2007). The Roboocyte. In: Molnar, P., Hickman, J.J. (eds) Patch-Clamp Methods and Protocols. Methods in Molecular Biology™, vol 403. Humana Press. https://doi.org/10.1007/978-1-59745-529-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-529-9_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-698-6

  • Online ISBN: 978-1-59745-529-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics