Skip to main content

An Iterative Method for Selecting Degenerate Multiplex PCR Primers

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 402))

Summary

Single-nucleotide polymorphism (SNP) genotyping is an important molecular genetics process, which can produce results that will be useful in the medical field. Because of inherent complexities in DNA manipulation and analysis, many different methods have been proposed for a standard assay. One of the proposed techniques for performing SNP genotyping requires amplifying regions of DNA surrounding a large number of SNP loci. To automate a portion of this particular method, it is necessary to select a set of primers for the experiment. Selecting these primers can be formulated as the Multiple Degenerate Primer Design (MDPD) problem. The Multiple, Iterative Primer Selector (MIPS) is an iterative beam-search algorithm for MDPD. Theoretical and experimental analyses show that this algorithm performs well compared with the limits of degenerate primer design. Furthermore, MIPS outperforms an existing algorithm that was designed for a related degenerate primer selection problem.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. G. Marth, R. Yeh, M. Minton, R. Donaldson, Q. Li, S. Duan, R. Davenport, R. Miller, and P. Kwok. Single-nucleotide polymorphisms in the public domain: how useful are they? Nature Genetics, 27: 371–372, 2001.

    Article  PubMed  CAS  Google Scholar 

  2. F. S. Collins and V. A. McKusick. Implications of the human genome project for medical science. JAMA, 285:2447–2448, 2001.

    Article  Google Scholar 

  3. P. Kwok. Methods for genotyping single nucleotide polymorphisms. Annual Review of Genomics and Human Genetics, 2:235–258, 2001.

    Article  PubMed  CAS  Google Scholar 

  4. W.R. Pearson, G. Robins, D.E. Wrege, and T. Zhang. On the primer selection problem in polymerase chain reaction experiments. Discrete and Applied Mathematics, 71:231–246, 1996.

    Article  Google Scholar 

  5. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York, NY, 1979.

    Google Scholar 

  6. K. Doi and H. Imai. A greedy algorithm for minimizing the number of primers in multiple PCR experiments. Genome Informatics, 10:73–82, 1999.

    PubMed  CAS  Google Scholar 

  7. W. R. Pearson, G. Robins, D. E. Wrege, and T. Zhang. A new approach to primer selection problem in polymerase chain reaction experiments. In Third International Conference on Intelligent Systems for Molecular Biology, pp. 285–291. AAAI Press, Cambridge, United Kingdom, 1995.

    Google Scholar 

  8. P. Nicodeme and J. Steyaert. Selecting optimal oligonucleotide primers for multiplex PCR. In Proceedings of Fifth Conference on Intelligent Systems for Molecular Biology ISMB97, HAAI Press, Halkidiki, Greece pp. 210–213, 1997.

    Google Scholar 

  9. K. Doi and H. Imai. Complexity properties of the primer selection problem for PCR experiments. In Proceedings of the 5th Japan-Korea Joint Workshop on Algorithms and Computation, The University of Tokyo, Tokyo, Japan pp. 152–159, 2000.

    Google Scholar 

  10. S. Kwok, S.Y. Chang, J.J. Sninsky, and A. Wang. A guide to the design and use of mismatched and degenerate primers. PCR Methods and Applications, 3:S39–S47, 1994.

    PubMed  CAS  Google Scholar 

  11. Cornish-Bowden. IUPAC-IUB symbols for nucleotide nomenclature. Nucleic Acids Research, 13:3021–3030, 1985.

    Article  Google Scholar 

  12. C. Linhart and R. Shamir. The degenerate primer design problem. Bioinformatics, 18 (Suppl. 1):S172–S180, 2002.

    Article  PubMed  Google Scholar 

  13. R. Souvenir. An iterative beam search algorithm for degenerate primer selection. Master’s thesis, Washington University, Saint Louis, MO, December 2003.

    Google Scholar 

  14. R. Bisiani. Search, beam. In S.C. Shapiro, editor, Encyclopedia of Artificial Intelligence, pp. 1467–1468. Wiley-Interscience, New York, NY, 2nd edition, 1992.

    Google Scholar 

  15. G.Z. Hertz and G.D. Stormo. Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics, 15:563–577, 1999.

    Article  PubMed  CAS  Google Scholar 

  16. M.S. Waterman. Introduction to Computational Biology. Chapman & Hall, London, UK 1995.

    Google Scholar 

  17. The Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature, 409:860–921, 2001.

    Article  Google Scholar 

  18. UCSC genome browser. Web site http://genome.ucse.edu.

  19. A.F.A Smit. Origin of interspersed repeats in the human genome. Current Opinion in Genetics and Development, 6(6):743–749, 1996.

    Article  PubMed  CAS  Google Scholar 

  20. A.F.A Smit. Structure and Evolution of Mammalian Interspersed Repeats. PhD thesis, USC, 1996.

    Google Scholar 

  21. A.F.A. Smit and P. Green. RepeatMasker. Available at http://ftp.genome.washington.edu/RM/RepeatMasker.html .

  22. G.D. Forney, Jr. The Viterbi algortihm. In Proceedings of IEEE, volume 61, pp. 268–278, 1973.

    Article  Google Scholar 

  23. W.R. Pearson and D.J. Lipman. Improved tools for biological sequence analysis. In PNAS, volume 85, pages 2444–2448, 1988.

    Article  CAS  Google Scholar 

  24. D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology, chapter 15, p. 377. Press Syndicate of the University of Cambridge, 1997.

    Book  Google Scholar 

  25. R. Souvenir, J. Buhler, G. Stormo, and W. Zhang. Selecting degenerate multiplex PCR primers. In Proceedings of Workshop on Algorithms in Bioinformatics (WABI-03), 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press

About this protocol

Cite this protocol

Souvenir, R., Buhler, J., Stormo, G., Zhang, W. (2007). An Iterative Method for Selecting Degenerate Multiplex PCR Primers. In: Yuryev, A. (eds) PCR Primer Design. Methods in Molecular Biology™, vol 402. Humana Press. https://doi.org/10.1007/978-1-59745-528-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-528-2_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-725-9

  • Online ISBN: 978-1-59745-528-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics