Meiosis pp 99-114 | Cite as

Visual Markers for Detecting Gene Conversion Directly in the Gametes of Arabidopsis thaliana

  • Luke E. Berchowitz
  • Gregory P. Copenhaver
Part of the Methods in Molecular Biology book series (MIMB, volume 557)


Measuring meiotic gene conversion is important both because of its role in the fundamental mechanisms of meiotic recombination and because of its influence on linkage relationships and allelic diversity in the genome. Historically, gene conversion has been most thoroughly examined in fungal organisms through the use of tetrad analysis. Here we describe a method for using tetrad analysis in the model plant Arabidopsis thaliana to detect and quantify gene conversion events – a resource unavailable in most other higher eukaryotic model systems.

Key words

meiosis recombination crossing-over heteroduplex DNA mismatch repair 



We would like to thank Jeff Sekelsky (UNC at Chapel Hill) for critical reading of the manuscript. We would also like to thank NSF (MCB-0618691) and DOE (DE-FGO2-05ER15651) for financial support.


  1. 1.
    Roman, H. (1985) Gene conversion and crossing-over. Environ. Mutagen. 7, 923–32.PubMedCrossRefGoogle Scholar
  2. 2.
    Copenhaver, G. P., Doelling, J. D., Gens, J. S., and Pikaard, C. S. (1995) Use of RFLPs larger than 100 kbp to map the position and internal organization of the nucleolus organizer region on chromosome 2 in Arabidopsis thaliana. Plant J. 7, 273–86.PubMedCrossRefGoogle Scholar
  3. 3.
    Hall, S. E., Kettler, G., and Preuss, D. (2003) Centromere satellites from Arabidopsis populations: maintenance of conserved and variable domains. Genome Res. 13, 195–205.PubMedCrossRefGoogle Scholar
  4. 4.
    Cooley, M. B., Pathirana, S., Wu, H. J., Kachroo, P., and Klessig, D. F. (2000) Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12, 663–76.PubMedCrossRefGoogle Scholar
  5. 5.
    Skibbe, D. S., Liu, F., Wen, T. J., Yandeau, M. D., Cui, X., Cao, J., Simmons, C. R., and Schnable, P. S. (2002) Characterization of the aldehyde dehydrogenase gene families of Zea mays and Arabidopsis. Plant Mol. Biol. 48, 751–64.PubMedCrossRefGoogle Scholar
  6. 6.
    Meagher, R. B., Berry-Lowe, S., and Rice, K. (1989) Molecular evolution of the small subunit of ribulose bisphosphate carboxylase: nucleotide substitution and gene conversion. Genetics 123, 845–63.PubMedGoogle Scholar
  7. 7.
    Melquist, S., Luff, B., and Bender, J. (1999) Arabidopsis PAI gene arrangements, cytosine methylation and expression. Genetics 153, 401–13.PubMedGoogle Scholar
  8. 8.
    Haubold, B., Kroymann, J., Ratzka, A., Mitchell-Olds, T., and Wiehe, T. (2002) Recombination and gene conversion in a 170-kb genomic region of Arabidopsis thaliana. Genetics 161, 1269–78.PubMedGoogle Scholar
  9. 9.
    Nordborg, M., Hu, T. T., Ishino, Y., Jhaveri, J., Toomajian, C., Zheng, H., Bakker, E., Calabrese, P., Gladstone, J., Goyal, R., Jakobsson, M., Kim, S., Morozov, Y., Padhukasahasram, B., Plagnol, V., Rosenberg, N. A., Shah, C., Wall, J. D., Wang, J., Zhao, K., Kalbfleisch, T., Schulz, V., Kreitman, M., and Bergelson, J. (2005) The Pattern of Polymorphism in Arabidopsis thaliana. PLoS Biol. 3, e196.PubMedCrossRefGoogle Scholar
  10. 10.
    Frisse, L., Hudson, R. R., Bartoszewicz, A., Wall, J. D., Donfack, J., and Di Rienzo, A. (2001) Gene conversion and different population histories may explain the contrast between polymorphism and linkage disequilibrium levels. Am. J. Hum. Genet. 69, 831–43.PubMedCrossRefGoogle Scholar
  11. 11.
    Copenhaver, G. P., Keith, K. C., and Preuss, D. (2000) Tetrad analysis in higher plants. A budding technology. Plant Physiol. 124, 7–16.PubMedCrossRefGoogle Scholar
  12. 12.
    Mather, K., and Beale, G. (1942) The calculation and precision of linkage values from tetrad analysis. J. Genet. 43, 1–30.CrossRefGoogle Scholar
  13. 13.
    Winkler, H. (1920) Verbreitung und Ursache der Parthenogenesis im Pflanzen- und Tierreiche, Verlag von Gustav Fischer, Jena.Google Scholar
  14. 14.
    Winkler, H. (1930) Die Konversion der Gene, Verlag von Gustav Fischer, Jena.Google Scholar
  15. 15.
    Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J., and Stahl, F. W. (1983) The double-strand-break repair model for recombination. Cell 33, 25–35.PubMedCrossRefGoogle Scholar
  16. 16.
    Allers, T., and Lichten, M. (2001) Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106, 47–57.PubMedCrossRefGoogle Scholar
  17. 17.
    Kunkel, T. A., and Erie, D. A. (2005) DNA mismatch repair. Annu. Rev. Biochem. 74, 681–710.PubMedCrossRefGoogle Scholar
  18. 18.
    Preuss, D., Rhee, S. Y., and Davis, R. W. (1994) Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes. Science 264, 1458–60.PubMedCrossRefGoogle Scholar
  19. 19.
    Francis, K. E., Lam, S. Y., and Copenhaver, G. P. (2006) Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiol. 142, 1004–13.PubMedCrossRefGoogle Scholar
  20. 20.
    Copenhaver, G. P., Browne, W. E., and Preuss, D. (1998) Assaying genome-wide recombination and centromere functions with Arabidopsis tetrads. Proc. Natl. Acad. Sci. U S A 95, 247–52.PubMedCrossRefGoogle Scholar
  21. 21.
    Francis, K. E., Lam, S. Y., Harrison, B. D., Bey, A. L., Berchowitz, L. E., and Copenhaver, G. P. (2007) Pollen tetrad-based visual assay for meiotic recombination in Arabidopsis. Proc. Natl. Acad. Sci. U S A 104, 3913–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Twell, D., Yamaguchi, J., and McCormick, S. (1990) Development 109, 705–13.PubMedGoogle Scholar
  23. 23.
    McKinney, E. C., Ali, N., Traut, A., Feldmann, K. A., Belostotsky, D. A., McDowell, J. M., and Meagher, R. B. (1995) Plant J. 8, 613–22.PubMedCrossRefGoogle Scholar
  24. 24.
    Smyth, D. R., Bowman, J. L., and Meyerowitz, E. M. (1990) Plant Cell 2, 755–67.PubMedCrossRefGoogle Scholar
  25. 25.
    Twell, D., Yamaguchi, J., Wing, R. A., Ushiba, J., and McCormick, S. (1991) Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev. 5, 496–507.PubMedCrossRefGoogle Scholar
  26. 26.
    Neff, M. M., Neff, J. D., Chory, J., and Pepper, A. E. (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J. 14, 387–92.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Luke E. Berchowitz
    • 1
  • Gregory P. Copenhaver
    • 1
  1. 1.Department of Biology and The Carolina Center for Genome SciencesUniversity of North CarolinaChapel HillUSA

Personalised recommendations