Meiosis pp 323-355 | Cite as

Analysis of Meiotic Recombination Products from Human Sperm

  • Liisa Kauppi
  • Celia A. May
  • Alec J. Jeffreys
Part of the Methods in Molecular Biology book series (MIMB, volume 557)


Traditional methods for surveying meiotic recombination in humans are limited to pedigree and linkage disequilibrium analyses. We have developed assays that allow the direct detection of crossover and gene conversion molecules in batches of sperm DNA. To date, we have characterized 26 recombination hotspots by allele-specific PCR and selectively amplified recombinant DNA molecules from these regions. These analyses have revealed that meiotic crossover hotspots in humans are highly localized and flanked by DNA segments where recombination is suppressed. The centers of crossover hotspots are also active in noncrossover recombination, displaying short conversion tracts.

Key words

Allele-specific PCR haplotype sperm DNA crossover gene conversion 



Development of these methods was carried out at the University of Leicester with generous support by grants to A.J.J. from The Medical Research Council, The Louis-Jeantet Foundation and The Royal Society. L.K. was supported by the Osk. Huttunen Foundation, the Finnish Cultural Foundation, the Instrumentarium Science Foundation, and the Helsingin Sanomat Centennial Foundation.


  1. 1.
    Cullen, M., Erlich, H., Klitz, W., and Carrington, M. (1995) Molecular mapping of a recombination hotspot located in the second intron of the human TAP2 locus. Am. J. Hum. Genet. 56, 1350–1358.PubMedGoogle Scholar
  2. 2.
    Cullen, M., Noble, J., Erlich, H., Thorpe, K., Beck, S., Klitz, W., et al. (1997) Characterization of recombination in the HLA class II region. Am. J. Hum. Genet. 60, 397–407.PubMedGoogle Scholar
  3. 3.
    Cruciani, F., Bernardini, L., Santolamazza, P., Modiano, D., Torroni, A., and Scozzari, R. (2003) Linkage disequilibrium analysis of the human adenosine deaminase (ada) gene provides evidence for a lack of correlation between hot spots of equal and unequal homologous recombination. Genomics 82, 20–33.PubMedCrossRefGoogle Scholar
  4. 4.
    Smith, R. A., Ho, P. J., Clegg, J. B., Kidd, J. R., and Thein, S. L. (1998) Recombination breakpoints in the human beta-globin gene cluster. Blood 92, 4415–4421.PubMedGoogle Scholar
  5. 5.
    Twells, R. C., Mein, C. A., Phillips, M. S., Hess, J. F., Veijola, R., Gilbey, M., et al. (2003) Haplotype structure, LD blocks, and uneven recombination within the LRP5 gene. Genome Res. 13, 845–855.PubMedCrossRefGoogle Scholar
  6. 6.
    Hedrick, P. W. (1987) Gametic disequilibrium measures: proceed with caution. Genetics 117, 331–341.PubMedGoogle Scholar
  7. 7.
    Ardlie, K. G., Kruglyak, L., and Seielstad, M. (2002) Patterns of linkage disequilibrium in the human genome. Nat. Rev. Genet. 3, 299–309.PubMedCrossRefGoogle Scholar
  8. 8.
    Consortium, T. I. H. (2005) A haplotype map of the human genome. Nature 437, 1299–1320.CrossRefGoogle Scholar
  9. 9.
    Myers, S., Bottolo, L., Freeman, C., McVean, G., and Donnelly, P. (2005) A fine-scale map of recombination rates and hotspots across the human genome. Science 310, 321–324.PubMedCrossRefGoogle Scholar
  10. 10.
    Zavattari, P., Deidda, E., Whalen, M., Lampis, R., Mulargia, A., Loddo, M., et al. (2000) Major factors influencing linkage disequilibrium by analysis of different chromosome regions in distinct populations: demography, chromosome recombination frequency and selection. Hum. Mol. Genet. 9, 2947–2957.PubMedCrossRefGoogle Scholar
  11. 11.
    Laan, M., and Paabo, S. (1997) Demographic history and linkage disequilibrium in human populations. Nat. Genet. 17, 435–438.PubMedCrossRefGoogle Scholar
  12. 12.
    Tapper, W., Collins, A., Gibson, J., Maniatis, N., Ennis, S., and Morton, N. E. (2005) A map of the human genome in linkage disequilibrium units. Proc. Natl. Acad. Sci. USA 102, 11835–11839.PubMedCrossRefGoogle Scholar
  13. 13.
    Crawford, D. C., Bhangale, T., Li, N., Hellenthal, G., Rieder, M. J., Nickerson, D. A., et al. (2004) Evidence for substantial fine-scale variation in recombination rates across the human genome. Nat. Genet. 36, 700–706.PubMedCrossRefGoogle Scholar
  14. 14.
    Fearnhead, P., Harding, R. M., Schneider, J. A., Myers, S., and Donnelly, P. (2004) Application of coalescent methods to reveal fine-scale rate variation and recombination hotspots. Genetics 167, 2067–2081.PubMedCrossRefGoogle Scholar
  15. 15.
    Jeffreys, A. J., Neumann, R., Panayi, M., Myers, S., and Donnelly, P. (2005) Human recombination hot spots hidden in regions of strong marker association. Nat. Genet. 37, 601–606.PubMedCrossRefGoogle Scholar
  16. 16.
    McVean, G. A., Myers, S. R., Hunt, S., Deloukas, P., Bentley, D. R., and Donnelly, P. (2004) The fine-scale structure of recombination rate variation in the human genome. Science 304, 581–584.PubMedCrossRefGoogle Scholar
  17. 17.
    Jeffreys, A. J., Kauppi, L., and Neumann, R. (2001) Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat. Genet. 29, 217–222.PubMedCrossRefGoogle Scholar
  18. 18.
    Jeffreys, A. J., Murray, J., and Neumann, R. (1998) High-resolution mapping of crossovers in human sperm defines a minisatellite-associated recombination hotspot. Mol. Cell 2, 267–273.PubMedCrossRefGoogle Scholar
  19. 19.
    Jeffreys, A. J., Ritchie, A., and Neumann, R. (2000) High resolution analysis of haplotype diversity and meiotic crossover in the human TAP2 recombination hotspot. Hum. Mol. Genet. 9, 725–733.PubMedCrossRefGoogle Scholar
  20. 20.
    Kauppi, L., Stumpf, M. P., and Jeffreys, A. J. (2005) Localized breakdown in linkage disequilibrium does not always predict sperm crossover hot spots in the human MHC class II region. Genomics 86, 13–24.PubMedCrossRefGoogle Scholar
  21. 21.
    May, C. A., Shone, A. C., Kalaydjieva, L., Sajantila, A., and Jeffreys, A. J. (2002) Crossover clustering and rapid decay of linkage disequilibrium in the Xp/Yp pseudoautosomal gene SHOX. Nat. Genet. 31, 272–275.PubMedCrossRefGoogle Scholar
  22. 22.
    Tiemann-Boege, I., Calabrese, P., Cochran, D. M., Sokol, R., and Arnheim, N. (2006) High-resolution recombination patterns in a region of human chromosome 21 measured by sperm typing. PLoS Genet. 2, e70.PubMedCrossRefGoogle Scholar
  23. 23.
    Jeffreys, A. J., Kauppi, L., and Neumann, R. (2001) Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat. Genet. 29, 217–222.PubMedCrossRefGoogle Scholar
  24. 24.
    Jeffreys, A. J., and May, C. A. (2003) DNA enrichment by allele-specific hybridization (DEASH): a novel method for haplotyping and for detecting low-frequency base substitutional variants and recombinant DNA molecules. Genome Res. 13, 2316–2324.PubMedCrossRefGoogle Scholar
  25. 25.
    Jeffreys, A. J., and May, C. A. (2004) Intense and highly localized gene conversion activity in human meiotic crossover hot spots. Nat. Genet. 36, 151–156.PubMedCrossRefGoogle Scholar
  26. 26.
    Holloway, K., Lawson, V. E., and Jeffreys, A. J. (2006) Allelic recombination and de novo eletions in sperm in the human beta-globin gene region. Hum. Mol. Genet. 15, 1099–1111.PubMedCrossRefGoogle Scholar
  27. 27.
    Jeffreys, A. J., and Neumann, R. (2005) Factors influencing recombination frequency and distribution in a human meiotic crossover hotspot. Hum. Mol. Genet. 14, 2277–2287.PubMedCrossRefGoogle Scholar
  28. 28.
    Jeffreys, A. J., Tamaki, K., MacLeod, A., Monckton, D. G., Neil, D. L., and Armour, J. A. (1994) Complex gene conversion events in germline mutation at human minisatellites. Nat. Genet. 6, 136–145.PubMedCrossRefGoogle Scholar
  29. 29.
    Cheng, S., Chang, S. Y., Gravitt, P., and Respess, R. (1994) Long PCR. Nature 369, 684–685.PubMedCrossRefGoogle Scholar
  30. 30.
    Dean, F. B., Hosono, S., Fang, L., Wu, X., Faruqi, A. F., Bray-Ward, P., et al. (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl. Acad. Sci. USA 99, 5261–5266.PubMedCrossRefGoogle Scholar
  31. 31.
    Jeffreys, A. J., and Neumann, R. (2002) Reciprocal crossover asymmetry and meiotic drive in a human recombination hot spot. Nat. Genet. 31, 267–271.PubMedCrossRefGoogle Scholar
  32. 32.
    Wood, W. I., Gitschier, J., Lasky, L. A., and Lawn, R. M. (1985) Base composition-independent hybridization in tetramethylammonium chloride: a method for oligonucleotide screening of highly complex gene libraries. Proc. Natl. Acad. Sci. USA 82, 1585–1588.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Liisa Kauppi
    • 1
  • Celia A. May
    • 2
  • Alec J. Jeffreys
    • 3
  1. 1.Molecular Biology ProgramMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  2. 2.Department of GeneticsUniversity of LeicesterUK
  3. 3.Department of GeneticsUniversity of LeicesterUK

Personalised recommendations