Advertisement

Meiosis pp 143-164 | Cite as

Genome-Wide Mapping of Meiotic DNA Double-Strand Breaks in Saccharomyces cerevisiae

  • Cyril Buhler
  • Robert Shroff
  • Michael Lichten
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 557)

Abstract

DNA double-strand breaks (DSBs) initiate meiotic recombination in eukaryotes. We describe two strategies that use microarrays to determine the genome-wide distribution of meiotic DSBs in the yeast Saccharomyces cerevisiae. The first is a chromatin immunoprecipitation (ChIP) approach that targets the Spo11 protein, which remains covalently attached to DSB ends in certain mutant backgrounds. The second approach involves BND cellulose enrichment of the single-strand DNA (ssDNA) recombination intermediate formed by end-resection at DSB sites following Spo11 removal.

Key words

Double-strand break Spo11 DMC1 rad50S chromatin immunoprecipitation single-strand DNA BND cellulose microarray background normalization quantitative PCR 

Notes

Acknowledgments

We thank Jennifer Gerton, Hugh Cam and Shiv Grewal for technical advice, Dhruba Chattoraj and Yikang Rong for advice regarding the manuscript, and David Kaback and Jennifer Fung for communicating data in advance of publication.

References

  1. 1.
    Keeney, S. (2001) Mechanism and control of meiotic recombination initiation. Curr. Top. Dev. Biol. 52, 1–53.PubMedCrossRefGoogle Scholar
  2. 2.
    Koehler, K. E., Hawley, R. S., Sherman, S., and Hassold, T. (1996) Recombination and nondisjunction in humans and flies. Hum. Mol. Genet. 5, 1495–1504.PubMedGoogle Scholar
  3. 3.
    Myers, S., Bottolo, L., Freeman, C., McVean, G., and Donnelly, P. (2005) A fine-scale map of recombination rates and hotspots across the human genome. Science 310, 321–324.PubMedCrossRefGoogle Scholar
  4. 4.
    Drouaud, J., Camilleri, C., Bourguignon, P. Y., Canaguier, A., Berard, A., Vezon, D., Giancola, S., Brunel, D., Colot, V., Prum, B., Quesneville, H., and Mezard, C. (2006) Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination “hot spots”. Genome Res. 16, 106–114.PubMedCrossRefGoogle Scholar
  5. 5.
    Winzeler, E. A., Richards, D. R., Conway, A. R., Goldstein, A. L., Kalman, S., McCullough, M. J., McCusker, J. H., Stevens, D. A., Wodicka, L., Lockhart, D. J., and Davis, R. W. (1998) Direct allelic variation scanning of the yeast genome. Science 281, 1194–1197.PubMedCrossRefGoogle Scholar
  6. 6.
    Gerton, J. L., DeRisi, J., Shroff, R., Lichten, M., Brown, P. O., and Petes, T. D. (2000) Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 97, 11383–11390.PubMedCrossRefGoogle Scholar
  7. 7.
    Nairz, K. and Klein, F. (1997) mre11S--a yeast mutation that blocks double-strand-break processing and permits nonhomologous synapsis in meiosis. Genes Dev. 11, 2272–2290.PubMedCrossRefGoogle Scholar
  8. 8.
    Prinz, S., Amon, A., and Klein, F. (1997) Isolation of COM1, a new gene required to complete meiotic double- strand break-induced recombination in Saccharomyces cerevisiae. Genetics 146, 781–795.PubMedGoogle Scholar
  9. 9.
    Alani, E., Padmore, R., and Kleckner, N. (1990) Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61, 419–436.PubMedCrossRefGoogle Scholar
  10. 10.
    Keeney, S., Giroux, C. N., and Kleckner, N. (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375–384.PubMedCrossRefGoogle Scholar
  11. 11.
    Prieler, S., Penkner, A., Borde, V., and Klein, F. (2005) The control of Spo11’s interaction with meiotic recombination hotspots. Genes Dev. 19, 255–269.PubMedCrossRefGoogle Scholar
  12. 12.
    Robine, N., Uematsu, N., Amiot, F., Gidrol, X., Barillot, E., Nicolas, A., and Borde, V. (2007) Genome-wide redistribution of meiotic double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 27, 1868–1880.PubMedCrossRefGoogle Scholar
  13. 13.
    Cromie, G., Hyppa, R. W., Cam, H., Farah, J. A., Grewal, S., and Smith, G. R. (2007) A discrete class of intergenic DNA dictates meiotic DNA break hotspots in fission yeast. PLoS Genet. 3, e141.PubMedCrossRefGoogle Scholar
  14. 14.
    Neale, M. J., Pan, J., and Keeney, S. (2005) Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436, 1053–1057.PubMedCrossRefGoogle Scholar
  15. 15.
    Shinohara, A. and Shinohara, M. (2004) Roles of RecA homologues Rad51 and Dmc1 during meiotic recombination. Cytogenet. Genome Res. 107, 201–207.PubMedCrossRefGoogle Scholar
  16. 16.
    Blitzblau, H. G., Bell, G. W., Rodriguez, J., Bell, S. P., and Hochwagen, A. (2007) Mapping of meiotic single-stranded DNA reveals double-strand break hotspots near telomeres and centromeres. Curr. Biol. 17, 2003–2012.PubMedCrossRefGoogle Scholar
  17. 17.
    Buhler, C., Borde, V., and Lichten, M. (2007) Mapping meiotic ssDNA reveals a new landscape of DNA double-strand breaks in Saccharomyces cerevisiae. PLoS Biol. 5, e324.PubMedCrossRefGoogle Scholar
  18. 18.
    Borde, V., Wu, T. C., and Lichten, M. (1999) Use of a recombination reporter insert to define meiotic recombination domains on chromosome III of Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 4832–4842.PubMedGoogle Scholar
  19. 19.
    Baudat, F. and Nicolas, A. (1997) Clustering of meiotic double-strand breaks on yeast chromosome III. Proc. Natl. Acad. Sci. U. S. A. 94, 5213–5218.PubMedCrossRefGoogle Scholar
  20. 20.
    Strahl-Bolsinger, S., Hecht, A., Luo, K., and Grunstein, M. (1997) SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev. 11, 83–93.PubMedCrossRefGoogle Scholar
  21. 21.
    Kee, K. and Keeney, S. (2002) Functional interactions between SPO11 and REC102 during initiation of meiotic recombination in Saccharomyces cerevisiae. Genetics 160, 111–122.PubMedGoogle Scholar
  22. 22.
    Gamper, H., Piette, J., and Hearst, J. E. (1984) Efficient formation of a crosslinkable HMT monoadduct at the Kpn I recognition site. Photochem. Photobiol. 40, 29–34.PubMedCrossRefGoogle Scholar
  23. 23.
    Borde, V., Lin, W., Novikov, E., Petrini, J. H., Lichten, M., and Nicolas, A. (2004) Association of Mre11p with double-strand break sites during yeast meiosis. Mol. Cell 13, 389–401.PubMedCrossRefGoogle Scholar
  24. 24.
    Buck, M. J. and Lieb, J. D. (2004) ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83, 349–360.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu, J., Wu, T. C., and Lichten, M. (1995) The location and structure of double-strand DNA breaks induced during yeast meiosis: evidence for a covalently linked DNA-protein intermediate. EMBO J. 14, 4599–4608.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Cyril Buhler
    • 1
  • Robert Shroff
    • 1
  • Michael Lichten
    • 2
  1. 1.Center for Cancer Research, National Cancer InstituteBethesdaUSA
  2. 2.Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer InstituteBethesdaUSA

Personalised recommendations