Meiosis pp 3-20 | Cite as

Interaction of Genetic and Environmental Factors in Saccharomyces cerevisiae Meiosis: The Devil is in the Details

  • Victoria E. Cotton
  • Eva R. Hoffmann
  • Mohammed F.F. Abdullah
  • Rhona H. Borts
Part of the Methods in Molecular Biology book series (MIMB, volume 557)


One of the most important principles of scientific endeavour is that the results be reproducible from lab to lab. Although research groups rarely redo the published experiments of their colleagues, research plans almost always rely on the work of someone else. The assumption is that if the same experiment were repeated in another lab, results would be so similar that the same interpretation would be favoured. This notion allows one researcher to compare his/her own results to earlier work from other labs. An essential prerequisite for this is that the experiments are done in identical conditions and therefore the methodology must be clearly stated. While this may be scientific common sense, adherence is difficult because “standard” methods vary from one laboratory to another in subtle ways that are often not reported. More importantly, for many years the field of yeast meiotic recombination considered typical differences to be innocuous. This chapter will highlight the documented environmental and genetic variables that are known to influence meiotic recombination in Saccharomyces cerevisiae. Other potential methodological sources of variation in meiotic experiments are also discussed. A careful assessment of the effects of these variables, has led to insights into our understanding of the control of recombination and meiosis.

Key words

meiosis yeast recombination temperature nutrients 



We would like to thank all of our colleagues for their prompt responses to our many requests for the details of their sporulation protocols. We would also like to thank Rebecca Keelagher, Amit Dipak Amin and Robert Mason for technical assistance. R.H.B is a Royal Society/Wolfson Foundation Research Merit Award Holder. E.R.H. is a Royal Society Dorothy Hodgkin Fellow. The unpublished work was supported by the Wellcome Trust and the MRC.


  1. 1.
    Fogel, S. and Hurst, D. D. (1967) Meiotic gene conversion in yeast tetrads and the theory of recombination. Genetics 57, 455–481.PubMedGoogle Scholar
  2. 2.
    Resnick, M. A. (1976) The repair of double-strand breaks in DNA: a model involving recombination. J. Theor. Biol. 59, 97–106.PubMedCrossRefGoogle Scholar
  3. 3.
    Orr-Weaver, T. L. and Szostak, J. W. (1985) Fungal recombination. Microbiol. Rev. 49, 33–58.PubMedGoogle Scholar
  4. 4.
    Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J., and Stahl, F. W. (1983) The double-strand-break repair model for recombination. Cell 33, 25–35.PubMedCrossRefGoogle Scholar
  5. 5.
    Gilbertson, L. A. and Stahl, F. W. (1996) A test of the double-strand break model for meiotic recombination in Saccharomyces cerevisiae. Genetics 144, 27–41.PubMedGoogle Scholar
  6. 6.
    Borts, R. H., Lichten, M., Hearn, M., Davidow, L. S., and Haber, J. E. (1984) Physical monitoring of meiotic recombination in Saccharomyces cerevisiae. Cold Spring Harbor Symp. Quant. Biol. 49, 67–76.PubMedCrossRefGoogle Scholar
  7. 7.
    Borts, R. H., Lichten, M., and Haber, J. E. (1986) Analysis of meiosis-defective mutations in yeast by physical monitoring of recombination. Genetics 113, 551–567.PubMedGoogle Scholar
  8. 8.
    Alani, E., Padmore, R., and Kleckner, N. (1990) Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61, 419–436.PubMedCrossRefGoogle Scholar
  9. 9.
    Schwacha, A. and Kleckner, N. (1994) Identification of joint molecules that form frequently between homologs but rarely between sister chromatids during yeast meiosis. Cell 76, 51–63.PubMedCrossRefGoogle Scholar
  10. 10.
    Hunter, N. and Kleckner, N. (2001) The single-end invasion: an asymmetric intermediate at the double-strand break to double-Holliday junction transition of meiotic recombination. Cell 106, 59–70.PubMedCrossRefGoogle Scholar
  11. 11.
    Borner, G. V., Kleckner, N., and Hunter, N. (2004) Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29–45.PubMedCrossRefGoogle Scholar
  12. 12.
    Sun, H., Treco, D., and Szostak, J. (1991) Extensive 3′-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64, 1155–1161.PubMedCrossRefGoogle Scholar
  13. 13.
    Cao, L., Alani, E., and Kleckner, N. (1990) A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61, 1089–1101.PubMedCrossRefGoogle Scholar
  14. 14.
    Schwacha, A. and Kleckner, N. (1995) Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83, 738–791.CrossRefGoogle Scholar
  15. 15.
    Storlazzi, A., Liuzhong, X., and Kleckner, N. (1995) Crossover and noncrossover recombination during meioisis:timing and pathway relationships. Proc. Natl. Acad. Sci. 92, 8512–8516.PubMedCrossRefGoogle Scholar
  16. 16.
    Goyon, C. and Lichten, M. (1993) Timing of molecular events in meiosis in Saccharomyces cerevisiae: stable heteroduplex is formed late in meiotic prophase. Mol. Cell. Biol. 13, 373–382.PubMedGoogle Scholar
  17. 17.
    Allers, T. and Lichten, M. (2001) Intermediates of yeast meiotic recombination contain heteroduplex DNA. Mol. Cell. 8, 225–231.PubMedCrossRefGoogle Scholar
  18. 18.
    Allers, T. and Lichten, M. (2001) Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106, 47–57.PubMedCrossRefGoogle Scholar
  19. 19.
    Nachman, I., Regev, A., and Ramanathan, S. (2007) Dissecting timing variability in yeast meiosis. Cell 131, 544–556.PubMedCrossRefGoogle Scholar
  20. 20.
    de los Santos, T., Loidl, J., Larkin, B., and Hollingsworth, N. M. (2001) A role for MMS4 in the processing of recombination intermediates during meiosis in Saccharomyces cerevisiae. Genetics 159, 1511–1525.Google Scholar
  21. 21.
    de los Santos, T., Hunter, N., Lee, C., Larkin, B., Loidl, J., and Hollingsworth, N. M. (2003) The Mus81/Mms4 endonuclease acts independently of double-Holliday junction resolution to promote a distinct subset of crossovers during meiosis in budding yeast. Genetics 164, 81–94.Google Scholar
  22. 22.
    Merker, J. D., Dominska, M., and Petes, T. D. (2003) Patterns of heteroduplex formation associated with the initiation of meiotic recombination in the yeast Saccharomyces cerevisiae. Genetics 165, 47–63.PubMedGoogle Scholar
  23. 23.
    Jessop, L., Allers, T., and Lichten, M. (2005) Infrequent co-conversion of markers flanking a meiotic recombination initiation site in Saccharomyces cerevisiae. Genetics 169, 1353–1367.PubMedCrossRefGoogle Scholar
  24. 24.
    Hoffmann, E. R., Eriksson, E., Herbert, B. J., and Borts, R. H. (2005) MLH1 and MSH2 promote the symmetry of double-strand break repair events at the HIS4 hotspot in Saccharomyces cerevisiae. Genetics 163, 1292–1303.Google Scholar
  25. 25.
    Schultes, N. P. and Szostak, J. W. (1990) Decreasing gradients of gene conversion on both sides of the initiation site for meiotic recombination at the ARG4 locus in yeast. Genetics 126, 813–822.PubMedGoogle Scholar
  26. 26.
    Khazanehdari, K. and Borts, R. H. (2000) EXO1 and MSH4 differentially affect crossing-over and segregation. Chromosoma 109, 94–102.PubMedCrossRefGoogle Scholar
  27. 27.
    Borts, R. H., Chambers, S. R., and Abdullah, M. F. F. (2000) The many faces of mismatch repair in meiosis. Mutat. Res. 451, 129–150.PubMedCrossRefGoogle Scholar
  28. 28.
    Kirkpatrick, D. T., Dominska, M., and Petes, T. D. (1998) Conversion-type and restoration-type repair of DNA mismatches formed during meiotic recombination in Saccharomyces cerevisiae. Genetics 149, 1693–1705.PubMedGoogle Scholar
  29. 29.
    Roth, R. and Halvorson, H. O. (1969) Sporulation of yeast harvested during logarithmic growth. J. Bact. 98, 831–832.PubMedGoogle Scholar
  30. 30.
    Padmore, R., Cao, L., and Kleckner, N. (1991) Temporal analysis of reciprocal recombination and synaptonemal complex morphogenesis during meiosis in S. cerevisiae. Cell 66, 1239–1256.PubMedCrossRefGoogle Scholar
  31. 31.
    Kane, S. and Roth, R. (1974) Carbohydrate metabolism during ascospore development in yeast. J. Bact. 118, 8–14.PubMedGoogle Scholar
  32. 32.
    Deutschbauer, A. M. and Davis, R. W. (2005) Quantitative trait loci mapped to single-nucleotide resolution in yeast. Nat. Genet. 37, 1333–1340.PubMedCrossRefGoogle Scholar
  33. 33.
    Codon, A. C., Gasent-Ramirez, J. M., and Benitez, T. (1995) Factors which affect the frequency of sporulation and tetrad formation in Saccharomyces cerevisiae baker’s yeasts. Appl. Environ. Microbiol. 61, 630–638.PubMedGoogle Scholar
  34. 34.
    Rockmill, B. personal communication.Google Scholar
  35. 35.
    Borts, R. H. and Haber, J. E. (1989) Length and distribution of meiotic gene conversion tracts and crossovers in Saccharomyces cerevisiae. Genetics 123, 69–80.PubMedGoogle Scholar
  36. 36.
    Borts, R. H., Leung, W.-Y., Kramer, K., Kramer, B., Williamson, M. S., Fogel, S., and Haber, J. E. (1990) Mismatch repair-induced meiotic recombination requires the PMS1 gene product. Genetics 124, 573–584.PubMedGoogle Scholar
  37. 37.
    Hunter, N. and Borts, R. H. (1997) Mlh1p is unique among mismatch repair proteins in its ability to promote crossing-over during meiosis. Genes & Dev. 11, 1573–1582.CrossRefGoogle Scholar
  38. 38.
    Abdullah, M. F. F. and Borts, R. H. (2001) Meiotic recombination frequencies are affected by nutritional states in Saccharomyces cerevisiae. Proc. Nat. Acad. Sci. 98, 14524–14529.PubMedCrossRefGoogle Scholar
  39. 39.
    Symington, L. S. and Petes, T. D. (1988) Expansions and contractions of the genetic map relative to the physical map of yeast chromosome III. Mol. Cell. Biol. 8, 595–604.PubMedGoogle Scholar
  40. 40.
    Detloff, P., White, M. A., and Petes, T. D. (1992) Analysis of a gene conversion gradient at the HIS4 locus in Saccharomyces cerevisaie. Genetics 132, 113–123.PubMedGoogle Scholar
  41. 41.
    Detloff, P., Sieber, J., and Petes, T. (1991) Repair of specific base pair mismatches during meiotic recombination in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 737–745.PubMedGoogle Scholar
  42. 42.
    Nicolas, A., Treco, D., Schultes, N. P., and Szostak, J. W. (1989) An initiation site for meiotic gene conversion in the yeast Saccharomyces cerevisiae. Nature 338, 35–39.PubMedCrossRefGoogle Scholar
  43. 43.
    Treco, D., Thomas, B., and Arnheim, N. (1985) Recombination hot spot in the human beta-globin gene cluster: meiotic recombination of human DNA fragments in Saccharomyces cerevisiae. Mol. Cell. Biol. 5, 2029–2038.PubMedGoogle Scholar
  44. 44.
    Ben-Ari, G., Zenvirth, D., Sherman, A., David, L., Klutstein, M., Lavi, U., Hillel, J., and Simchen, G. (2006) Four linked genes participate in controlling sporulation efficiency in budding yeast. PLoS Genet. 2, 1815–1823.CrossRefGoogle Scholar
  45. 45.
    Primig, M., Williams, R. M., Winzeler, E. A., Tevzadze, G. G., Conway, A. R., Hwang, S. Y., Davis, R. W., and Esposito, R. E. (2000) The core meiotic transcriptome in budding yeasts. Nat. Genet. 26, 415–423.PubMedCrossRefGoogle Scholar
  46. 46.
    Liti, G., Carter, D. M., Moses, A. M., Warringer, J., Parts, L., James, S. A., Davey, R. P., Roberts, I. N., Burt, A., Koufopanou, V., Tsai, I. J., Bergman, C. M., Bensasson, D., O’Kelly, M. J., van Oudenaarden, A., Barton, D. B., Bailes, E., Nguyen, A. N., Jones, M., Quail, M. A., Goodhead, I., Sims, S., Smith, F., Blomberg, A., Durbin, R., and Louis, E. J. (2009) Nature 458, 337–341.Google Scholar
  47. 47.
    Hoffmann, E. R. and Borts, R. H. unpublished observations.Google Scholar
  48. 48.
    Nakagawa, T. and Ogawa, H. (1999) The Saccharomyces cerevisiae MER3 gene, encoding a novel helicase-like protein, is required for crossover control in meiosis. EMBO J 18, 5714–5723.PubMedCrossRefGoogle Scholar
  49. 49.
    Tsubouchi, H. and Ogawa, H. (2000) Exo1 roles for repair of DNA double-strand breaks and meiotic crossing over in Saccharomyces cerevisiae. Mol. Bio. Cell 11, 2221–2233.Google Scholar
  50. 50.
    Sym, M., Engebrecht, J. A., and Roeder, G. S. (1993) ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72, 365–378.PubMedCrossRefGoogle Scholar
  51. 51.
    Novak, J. E., Ross-Macdonald, P. B., and Roeder, G. S. (2001) The budding yeast Msh4 protein functions in chromosome synapsis and the regulation of crossover distribution. Genetics 158, 1013–1025.PubMedGoogle Scholar
  52. 52.
    Hoffmann, E. R., Shcherbakova, P. V., Kunkel, T. A., and Borts, R. H. (2003) MLH1 mutations differentially affect meiotic functions in Saccharomyces cerevisiae. Genetics 163, 515–526.PubMedGoogle Scholar
  53. 53.
    Abdullah, M. F., Hoffmann, E. R., Cotton, V. E., and Borts, R. H. (2004) A role for the MutL homologue MLH2 in controlling heteroduplex formation and in regulating between two different crossover pathways in budding yeast. Cytogenet. Genome. Res. 107, 180–190.PubMedCrossRefGoogle Scholar
  54. 54.
    Stone, J. E. and Petes, T. D. (2006) Analysis of the proteins involved in the in vivo repair of base-base mismatches and four-base loops formed during meiotic recombination in the yeast Saccharomyces cerevisiae. Genetics 173, 1223–1239.PubMedCrossRefGoogle Scholar
  55. 55.
    Alani, A., Reenan, R. A., and Kolodner, R. D. (1994) Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae. Genetics 137, 19–39.PubMedGoogle Scholar
  56. 56.
    Rockmill, B., Sym, M., Schertan, H., and Roeder, G. S. (1995) Roles for two RecA homologs in promoting meiotic chromosome synapsis. Genes & Dev. 9, 2648–2695.Google Scholar
  57. 57.
    Turney, D., de Los Santos, T., and Hollingsworth, N. M. (2004) Does chromosome size affect map distance and genetic interference in budding yeast? Genetics 168, 2421–2424.PubMedCrossRefGoogle Scholar
  58. 58.
    Oh, S. D., Lao, J. P., Hwang, P. Y., Taylor, A. F., Smith, G. R., and Hunter, N. (2007) BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell 130, 259–272.PubMedCrossRefGoogle Scholar
  59. 59.
    Martini, E., Diaz, R. L., Hunter, N., and Keeney, S. (2006) Crossover homeostasis in yeast meiosis. Cell 126, 285–295.PubMedCrossRefGoogle Scholar
  60. 60.
    Argueso, J. L., Kijas, A. W., Sarin, S., Heck, J., Waase, M., and Alani, E. (2003) Systematic mutagenesis of the Saccharomyces cerevisiae MLH1 gene reveals distinct roles for Mlh1p in meiotic crossing over and in vegetative and meiotic mismatch repair. Mol. Cell. Biol. 23, 873–886.PubMedCrossRefGoogle Scholar
  61. 61.
    Argueso, J. L., Wanat, J., Gemici, Z., and Alani, E. (2004) Competing crossover pathways act during meiosis in Saccharomyces cerevisiae. Genetics 168, 1805–1816.PubMedCrossRefGoogle Scholar
  62. 62.
    Stahl, F. W., Foss, H. M., Young, L. S., Borts, R. H., Abdullah, M. F., and Copenhaver, G. P. (2004) Does crossover interference count in Saccharomyces cerevisiae? Genetics 168, 35–48.PubMedCrossRefGoogle Scholar
  63. 63.
    Kaback, D. B., Barber, D., Mahon, J., Lamb, J., and You, J. (1999) Chromosome size-dependent control of meiotic reciprocal recombination in Saccharomyces cerevisiae: the role of crossover interference. Genetics 152, 1475–1486.PubMedGoogle Scholar
  64. 64.
    Cotton, V. (2007) A structural and functional analysis of mismatch repair proteins in meiosis. University of Leicester Ph. D., Leicester.Google Scholar
  65. 65.
    Hoffmann, E. R. and Borts, R. H. (2004) Meiotic recombination intermediates and mismatch repair proteins. Cytogenet. Genome. Res. 107, 232–248.PubMedCrossRefGoogle Scholar
  66. 66.
    Esposito, R. E. and Klapholz, S. (1981) Meiosis and ascospore development, in The molecular biology of the yeast Saccharomyces, vol. 1 (Strathern, J. N., Jones, E. W., and Broach, J. R., eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, pp. 211–287.Google Scholar
  67. 67.
    Kassir, Y. and Simchen, G. (1991) Monitoring meiosis and sporulation in Saccharomyces cerevisiae. Meth. Enzymol. 194, 94–110.PubMedCrossRefGoogle Scholar
  68. 68.
    Resnick, M. A., Stasiewicz, S., and Game, J. C. (1983) Meiotic DNA metabolism in wild-type and excision-deficient yeast following UV exposure. Genetics 104, 583–601.PubMedGoogle Scholar
  69. 69.
    Blitzblau, H. G., Bell, G. W., Rodriguez, J., Bell, S. P., and Hochwagen, A. (2007) Mapping of meiotic single-stranded DNA reveals double-strand break hotspots near centromeres and telomeres. Curr. Biol. 17, 2003–2012.Google Scholar
  70. 70.
    White, M. A., Detloff, P., Strand, M., and Petes, T. D. (1992) A promoter deletion reduces the rate of mitotic, but not meiotic, recombination at the HIS4 locus in yeast. Curr. Genet. 21, 109–116.PubMedCrossRefGoogle Scholar
  71. 71.
    White, M. A., Dominska, M., and Petes, T. D. (1993) Transcription factors are required for the meiotic recombination hotspot at the HIS4 locus in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 90, 6621–6625.PubMedCrossRefGoogle Scholar
  72. 72.
    Fan, Q., Xu, F., and Petes, T. D. (1995) Meiosis-specific double-strand breaks at the HIS4 recombination hotspot in the yeast Saccharomyces cerevisiae: control in cis and trans. Mol. Cell. Biol. 15, 1679–1688.PubMedGoogle Scholar
  73. 73.
    Mieczkowski, P. A., Dominska, M., Buck, M. J., Gerton, J. L., Lieb, J. D., and Petes, T. D. (2006) Global analysis of the relationship between the binding of the Bas1p transcription factor and meiosis-specific double-strand DNA breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 26, 1014–1027.PubMedCrossRefGoogle Scholar
  74. 74.
    Hinnebusch, A. G. and Natarajan, K. (2002) Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot. Cell 1, 22–32.PubMedCrossRefGoogle Scholar
  75. 75.
    Chua, P. R. and Roeder, G. S. (1998) Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis. Cell 93, 349–359.PubMedCrossRefGoogle Scholar
  76. 76.
    Hochwagen, A., Tham, W. H., Brar, G. A., and Amon, A. (2005) The FK506 binding protein Fpr3 counteracts protein phosphatase 1 to maintain meiotic recombination checkpoint activity. Cell 122, 861–873.PubMedCrossRefGoogle Scholar
  77. 77.
    Marston, A. L., Tham, W. H., Shah, H., and Amon, A. (2004) A genome-wide screen identifies genes required for centromeric cohesion. Science 303, 1367–1370.PubMedCrossRefGoogle Scholar
  78. 78.
    Blunt and Hoffman, E. R. (2007) personal communication.Google Scholar
  79. 79.
    Kubinyi, H. (1999) Chance favors the prepared mind--from serendipity to rational drug design. J. Recept. Signal. Transduct. Res. 19, 15–39.PubMedCrossRefGoogle Scholar
  80. 80.
    Robine, N., Uematsu, N., Amiot, F., Gidrol, X., Barillot, E., Nicolas, A., and Borde, V. (2007) Genome-wide redistribution of meiotic double-strand breaks in S. cerevisiae. Mol. Cell. Biol. 27, 1868–1880.Google Scholar
  81. 81.
    Sherman, F., Fink, G. R., and Hicks, J. B. (1986) Methods in yeast genetics, Cold Spring Harbor Laboratory, Plainview, NY.Google Scholar
  82. 82.
    Campbell, D. A., Fogel, S., and Lusnak, K. (1975) Mitotic chromosome loss in a disomic haploid of S. cerevisiae. Genetics 79, 383–396.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Victoria E. Cotton
    • 1
  • Eva R. Hoffmann
    • 2
  • Mohammed F.F. Abdullah
    • 3
  • Rhona H. Borts
    • 1
  1. 1.Department of GeneticsUniversity of LeicesterLeicesterUK
  2. 2.MRC Genome Damage and Stability CentreUniversity of SussexFalmerUK
  3. 3.Mara Institute of TechnologyShah AlamMalaysia

Personalised recommendations