A Cell Architecture Modeling System Based on Quantitative Ultrastructural Characteristics

  • Július Parulek
  • Miloš Šrámek
  • Michal Červęanský
  • Marta Novotová
  • Ivan Zahradník*
Part of the Methods in Molecular Biology book series (MIMB, volume 500)


The architecture of living cells is difficult to describe and communicate; therefore, realistic computer models may help their understanding. 3D models should correspond both to qualitative and quantitative experimental data and therefore should include specific authoring tools such as appropriate visualization and stereological measures. For this purpose we have developed a problem solving environment for stereology-based modeling (PSE-SBM), which is an automated system for quantitative modeling of cell architecture. The PSE-SBM meets the requirement to produce models that correspond in stereological and morphologic terms to real cells and their organelles. Instead of using standard interactive graphing tools, our approach relies on functional modeling. We have built a system of implicit functions and set operations, organized in a hierarchical tree structure, which describes individual cell organelles and their 3D relations. Natural variability of size, shape, and position of organelles is achieved by random variation of the specific parameters within given limits. The resulting model is materialized by evaluation of these functions and is adjusted for a given set of specific parameters defined by the user. These principles are explained in detail, and modeling of segments of a muscle cell is used as an example to demonstrate the potential of the PSE-SBM for communication of architectural concepts and testing of structural hypotheses.


Implicit modeling Cell architecture Muscle cell Stereology 3D structure Visualization Automatic model generation XML 


  1. 1.
    Zahradník, I., Parulek, J., and Sramek, P. (2004) Geometrical modelling of the ultrastructure of muscle cells. Physiol Res 53, 44P.Google Scholar
  2. 2.
    Novotová, M., Pavlovičová, M., Veksler, V.I., Ventura-Clapier, R., Zahradník, I. (2006) Ultrastructural remodeling of fast skeletal muscle fibers induced by invalidation of creatine kinase. Am J Physiol Cell Physiol. 291, C1279–1285.Google Scholar
  3. 3.
    Parulek, J. (2007) Problem solving environment for stereology based implicit modeling of muscle cells. Ph.D. thesis, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic.Google Scholar
  4. 4.
    Parulek, J., Šrámek, M., and Zahradník, I. (2004) Geometrical modelling of muscle cells based on functional representation of polygons. J WSCG 12, 121–124.Google Scholar
  5. 5.
    Parulek, J., Zahradník, I., and Šrámek, M. (2004) A modelling tool for construction of 3d structure of muscle cells, in Analysis of Biomedical Signals and Images. Proceedings of the 17th Biennial International EURASIP Conference BIOSIGNAL 2004 (Jan, J., Kozumplik, J., and Provazník, I., eds.), Vutium Press, Brno, pp. 267–269.Google Scholar
  6. 6.
    Parulek, J., Zahradník, I., Novotová, M., and Šrámek, M. (2006) Geometric modeling of muscle cells. G.I.T. Imaging Microsc 8, 58–59.CrossRefGoogle Scholar
  7. 7.
    Parulek, J., Ciglán, M., Šimo, B., Šrámek, M., Hluchý, L., and Zahradník, I. (2007) Grid problem solving environment for stereology based modeling, in OTM Confederated International Conferences, Part II (Meersman, R., Tari, Z., eds.), Springer, Berlin, pp. 1417–1434.Google Scholar
  8. 8.
    Blender, http://www.blender.org, accessed on December 14, 2007.
  9. 9.
    Truespace, http://www.caligari.com/, accessed on December 14, 2007.
  10. 10.
    Bloomenthal, J., Bajaj, Ch., Blinn, J., Cani-Gascuel, M.-P., Rockwood, A., Wyvill, B., and Wyvill, G. (1997) Introduction to Implicit Surfaces. Morgan Kaufman, San Francisco, CA.Google Scholar
  11. 11.
    Velho, L., Figueiredo, L. H., and Gomes, J. A. (1998) Implicit Objects in Computer Graphics. Springer, New York.Google Scholar
  12. 12.
    Blinn, J. (1982) A generalization of algebraic surface drawing. ACM Trans Graph 1, 235–256.CrossRefGoogle Scholar
  13. 13.
    Wyvill, G., Mcpheeters, C., and Wyvill, B. (1986) Data structure for soft objects. Vis Comput 2, 227–234.CrossRefGoogle Scholar
  14. 14.
    Nishimura, H., Hirai, M., Kavai, T., Kawata, T., Shirakawa, I., and Omura, K. (1985) Object modeling by distribution function and a method of image generation. Trans IECE Jpn J68-D, 718–725.Google Scholar
  15. 15.
    Bloomenthal, J. and Wyvill, B. (1990) Interactive techniques for implicit modeling, in SI3D'90: Proceedings of the 1990 Symposium on Interactive 3D graphics, ACM, New York, pp. 109–116.Google Scholar
  16. 16.
    Bloomenthal, J. and Shoemaker, S. (1991) Convolution surfaces, in SIGGRAPH'91: Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, pp. 251–256.Google Scholar
  17. 17.
    Czanner, S., Durikovic, R., and Inoue, H. (2001) Growth simulation of human embryo brain, in SCCG'01: Proceedings of the 17th Spring conference on Computer graphics, IEEE Computer Society, Washington, DC, p. 139.Google Scholar
  18. 18.
    Durikovic, R. and Czanner, S. (2002) Implicit surfaces for dynamic growth of digestive system, in SMI'02: Proceedings of the Shape Modeling International 2002, IEEE Computer Society, Washington, DC, p. 111.Google Scholar
  19. 19.
    Oeltze, S. and Preim, B. (2004) Visualization of anatomic tree structures with convolution surfaces, in Joint EUROGRAPHICS–IEEE TCVG Symposium on Visualization (Deussen, O., Hansen, C., Keim, D. A., and Saupe, D., eds.), The Eurographics Association, Aire-la-Ville, Switzerland, pp. 311–320.Google Scholar
  20. 20.
    Barr, A. (1981) Superquadrics and angle-preserving transformations. IEEE Comput Graph Appl 1, 11–23.CrossRefGoogle Scholar
  21. 21.
    Pasko, A. A., Adzhiev, V., Sourin, A., and Savchenko, V. V. (1995) Function representation in geometric modeling: concepts, implementation and applications. Vis Comput 11, 429–446.CrossRefGoogle Scholar
  22. 22.
    Wyvill, B. and van Overveld, K. (1997) Warping as a modelling tool for csg/implicit models, in Proceedings of the International Conference on Shape Modeling and Applications, 1997, IEEE Computer Society, Aizu, Japan, pp. 205–214.Google Scholar
  23. 23.
    Ricci, A. (1972) A constructive geometry for computer graphics. Comput J 16, 157–160.CrossRefGoogle Scholar
  24. 24.
    Shapiro, V. (2007) Semi-analytic geometry with R-functions. Acta Numerica 16, 239–303.CrossRefGoogle Scholar
  25. 25.
    Pasko, A. A. and Savchenko, V. V. (1994) Blending operations for the functionally based constructive geometry, in Set-theoretic Solid Modeling: Techniques and Applications, CSG 94 Conference Proceedings, Information Geometers, Winchester, UK, pp. 151–161.Google Scholar
  26. 26.
    Dekkers, D., van Overveld, K., and Golsteijn, R. (2004) Combining CSG modeling with soft blending using Lipschitz-based implicit surfaces. Vis Comput 20, 380–391.CrossRefGoogle Scholar
  27. 27.
    Muraki, S. (1991) Volumetric shape description of range data using blobby model, in SIGGRAPH'91: Proceedings of the18th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, pp. 227–235.Google Scholar
  28. 28.
    Duchon, J. (1977) Splines minimizing rotation-invariant seminorms in Sobolev spaces, in Lecture Notes in Mathematics, Vol. 571 (Schempp, W. and Zeller, K., eds.), Springer, Berlin, pp. 85–100.Google Scholar
  29. 29.
    Floater, M. S. and Iske, A. (1996) Multistep scattered data interpolation using compactly supported radial basis functions. J Comput Appl Math 73, 65–78.CrossRefGoogle Scholar
  30. 30.
    Savchenko, V. V., Pasko, A. A., Okunev, O. G., and Kunii, T. L. (1995) Function representation of solids reconstructed from scattered surface points and contours. Comput Graph Forum 14, 181–188.CrossRefGoogle Scholar
  31. 31.
    Turk, G. and O'Brien, J. F. (2002) Modelling with implicit surfaces that interpolate. ACM Trans Graph 21, 855–873.CrossRefGoogle Scholar
  32. 32.
    Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum, B. C., and Evans, T. R. (2001) Reconstruction and representation of 3d objects with radial basis functions, in SIGGRAPH'01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, pp. 67–76.Google Scholar
  33. 33.
    Crampin, E. J., Halstead, M., Hunter, P., Nielsen, P., Noble, D., Smith, N., and Tawhai, M. (2004) Computational physiology and the physiome project. Exp Physiol 89, 1–26.PubMedCrossRefGoogle Scholar
  34. 34.
    Prusinkiewicz, P. (1993) Modeling and visualisation of biological structures, in Proceedings of Graphics Interface'93, Toronto, ON, pp. 128–137.Google Scholar
  35. 35.
    Wyvill, B., Guy, A., and Galin, E. (1999) Extending the csg tree (warping, blending and boolean operations in an implicit surface modeling system). Comput Graph Forum 18, 149–158.CrossRefGoogle Scholar
  36. 36.
    Witkin, A. P. and Heckbert, P. S. (1994) Using particles to sample and control implicit surfaces, in SIGGRAPH'94: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, pp. 269–277.Google Scholar
  37. 37.
    Adzhiev, V., Cartwright, R., Fausett, E., Ossipov, A., Pasko, A., and Savchenko, V. (1999) Hyperfun project: A framework for collaborative multidimensional f-rep modeling, in Proceedings of the Implicit Surfaces'99 EUROGRAPHICS/ACM SIGGRAPH Workshop, New York, pp. 59–69.Google Scholar
  38. 38.
    Schroeder, W. J., Martin, K. M., and Lorensen, W. E. (1996) The design and implementation of an object-oriented toolkit for 3D graphics and visualization, in VIS'96: Proceedings of the Seventh conference on Visualization'96, IEEE Computer Society, Los Alamitos, CA, pp. 93–100.Google Scholar
  39. 39.
    Lorensen, W. E. and Cline, H. E. (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph 21, 163–169.CrossRefGoogle Scholar
  40. 40.
    Bloomenthal, J. (1988) Polygonization of implicit surfaces. Comput Aided Geom Des 5, 341–355.CrossRefGoogle Scholar
  41. 41.
    Povray. Povray — the persistence of vision ray tracer. http://www.povray.org/, accessed on October 17, 2007.
  42. 42.
    Parulek, J., Novotný, P., and Šrámek, M. (2006) XISL – a development tool for construction of implicit surfaces, in SCCG'06: Proceedings of the 22nd Spring Conference on Computer Graphics, Comenius University, Bratislava, pp. 128–135.Google Scholar
  43. 43.
    Pasko, A., Savchenko, A., and Savchenko, V. (1996) Polygon-to-function conversion for sweeping, in The Eurographics/SIGGRAPH Workshop on Implicit Surfaces (Hart, J. and van Overveld, K., eds.), Eurographics, Eindhoven, The Netherlands, pp. 163–171.Google Scholar
  44. 44.
    Sourin, A. I. and Pasko, A. A. (1996) Function representation for sweeping by a moving solid. IEEE Transactions on Visualization and Computer Graphics 2, 11–18.CrossRefGoogle Scholar
  45. 45.
    Schmidt, R. and Wyvill, B. (2005) Generalized sweep templates for implicit modeling, in GRAPHITE'05: Proceedings of the 3rd International Conference on Computer Graphics and Iinteractive Techniques, ACM, New York, pp. 187–196.Google Scholar
  46. 46.
    Parulek, J. and Šrámek, M. (2007) Implicit modeling by metamorphosis of 2D shapes, in SCCG'07: Proceedings of the 23rd Spring Conference on Computer Graphics, Comenius University, Bratislava, pp. 227–234.Google Scholar
  47. 47.
    GeomCell http://cvs.ui.sav.sk/twiki/bin/view/EGEE/UserGuide, accessed on December 13, 2008.Google Scholar
  48. 48.
    PLY format. http://www.cc.gatech.edu/projects/large_models/ply.html, accessed on December 14, 2007.
  49. 49.
    Sramek, M., Dimitrov, L. I., Straka, M., and Cervenansky, M. (2004) The f3d tools for processing and visualization of volumetric data. J Med Inform Technol 7, MIP-71—MIP-79Google Scholar
  50. 50.
    Elias, H., Henning, A. and Schwarz, D. E. (1971) Stereology: application to biomedical research. Physiol Rev 51, 158–196.PubMedGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Július Parulek
  • Miloš Šrámek
  • Michal Červęanský
  • Marta Novotová
  • Ivan Zahradník*
    • 1
  1. 1.Institute of Molecular Physiology and GeneticsSlovak Academy of SciencesBratislavaSlovak Republic

Personalised recommendations