Skip to main content

Restriction Digestion and Real-Time PCR (qAMP)

  • Protocol
Book cover DNA Methylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 507))

Abstract

DNA methylation in mammals has been shown to play many important roles in diverse biological phenomena. Here we describe a simple and straightforward method that quantitatively measures site-specific levels of DNA methylation in a quick and cost-effective manner. The quantitative analysis of DNA methylation using real-time PCR (qAMP) technique involves the digestion of genomic DNA using methylation-sensitive and methylation-dependent restriction enzymes followed by real-time PCR. This approach generates accurate and reproducible results without the requirement for prior treatment of the DNA with sodium bisulfite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goll, M. G., Bestor, T. H. (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74, 481–514.

    Article  CAS  PubMed  Google Scholar 

  2. Liu, L., Wylie, R. C., Andrews, L. G., et al. (2003) Aging, cancer and nutrition: the DNA methylation connection. Mech Ageing Dev 124, 989–898.

    Article  CAS  PubMed  Google Scholar 

  3. Ting, A. H., McGarvey, K. M., Baylin, S. B. (2006) The cancer epigenome – components and functional correlates. Genes Dev 20, 3215–3231.

    Article  CAS  PubMed  Google Scholar 

  4. Clark, S. J., Harrison, J., Paul, C. L., et al. (1984) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22, 2990–2997.

    Google Scholar 

  5. Frommer, M., McDonald, L .E., Millar, D. S., et al. (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 89, 1827–1831.

    Article  CAS  PubMed  Google Scholar 

  6. Grunau, C., Clark, S. J., Rosenthal, A. (2001) Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res 29, e65.

    Article  CAS  PubMed  Google Scholar 

  7. Munson, K., Clark, J., Lamparska-Kupsik, K., et al. (2007) Recovery of bisulfite-converted genomic sequences in the methylation-sensitive QPCR. Nucleic Acids Res 35, 2893–2903.

    Article  CAS  PubMed  Google Scholar 

  8. Oakes, C. C., La Salle, S., Robaire, B., et al. (2006) Assessment of a quantitative, non-bisulfite-based method for the analysis of DNA methylation using real-time PCR (qMAP). Epigenetics 1, 146–152.

    Article  PubMed  Google Scholar 

  9. Oakes, C. C., Kelly, T. L., Robaire, B., et al. (2007) Adverse effects of 5-aza-2′-deoxycytidine on spermatogenesis include reduced sperm function and selective inhibition of de novo DNA methylation. J Pharmacol Exp Ther 322, 1171–1180.

    Article  CAS  PubMed  Google Scholar 

  10. Oakes, C. C., La Salle, S., Smiraglia, D. J., et al. (2007) Developmental acquisition of genome-wide DNA methylation occurs prior to meiosis in male germ cells. Dev Biol 307, 368–379.

    Article  CAS  PubMed  Google Scholar 

  11. Oakes, C. C., La Salle, S., Smiraglia, D. J., et al. (2007) A unique configuration of genome-wide DNA methylation patterns in the testis. Proc Natl Acad Sci USA 104, 228–233.

    Article  CAS  PubMed  Google Scholar 

  12. La Salle, S., Oakes, C. C., Neaga, O. R., et al. (2007) Loss of spermatogonia and wide-spread DNA methylation defects in newborn male mice deficient in DNMT3L. BMC Dev Biol 7, 104

    Article  PubMed  Google Scholar 

  13. Stewart, F. J., Panne, D., Bickle, T. A., et al. (2000) Methyl-specific DNA binding by McrBC, a modification-dependent restriction enzyme. J Mol Biol 298, 611–622.

    Article  CAS  PubMed  Google Scholar 

  14. Imamura, T., Kerjean, A., Heams, T. et al. (2005) Dynamic CpG and non-CpG methylation of the Peg1/Mest gene in the mouse oocyte and preimplantation embryo. J Biol Chem 280, 20171–20175.

    Article  CAS  PubMed  Google Scholar 

  15. Ramsahoye, B. H., Biniszkiewicz, D., Lyko, F., et al. (2000) Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci USA 97, 5237–5242.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Oakes, C.C., La Salle, S., Trasler, J.M., Robaire, B. (2009). Restriction Digestion and Real-Time PCR (qAMP). In: Tost, J. (eds) DNA Methylation. Methods in Molecular Biology, vol 507. Humana Press. https://doi.org/10.1007/978-1-59745-522-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-522-0_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-61-9

  • Online ISBN: 978-1-59745-522-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics