Skip to main content

Identification and Quantification of Differentially Methylated Loci by the Pyrosequencing™ Technology

  • Protocol
DNA Methylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 507))

Abstract

Most available protocols for gene-specific DNA methylation analysis are either labor intensive, not quantitative, or limited to the measurement of the methylation status of only one or very few CpG positions. Pyrosequencing is a real-time sequencing technology that overcomes these limitations. After bisulfite modification of genomic DNA, a region of interest is amplified by polymerase chain reaction (PCR) with one of the two primers being biotinylated. The PCR-generated template is rendered single stranded and a pyrosequencing primer is annealed to analyze quantitatively CpGs within 120 bases. Advantages of the pyrosequencing technology are the ease of its implementation, the high quality and the quantitative nature of the results, and its ability to identify differentially methylated positions in close proximity. A minimum amount of 10 ng of bisulfite-treated DNA is necessary to obtain high reproducibility and avoid random amplification. The required DNA amount can be provided by an individual sample or a pool of samples to rapidly investigate the presence of variable DNA methylation patterns. The use of pools and serial pyrosequencing, that is, the successive use of several pyrosequencing primers on the same DNA template, significantly reduces cost, labor, and analysis time as well as saving precious DNA samples for the analysis of gene-specific DNA methylation patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ronaghi, M. (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res 11, 3–11.

    Article  CAS  PubMed  Google Scholar 

  2. Ronaghi, M., Uhlen, M., Nyren, P. (1998) A sequencing method based on real-time pyrophosphate. Science 281, 363–365.

    Article  CAS  PubMed  Google Scholar 

  3. Ahmadian, A., Ehn, M., Hober, S. (2006) Pyrosequencing: history, biochemistry and future. Clin Chim Acta 363, 83–94.

    Article  CAS  PubMed  Google Scholar 

  4. Sanger, F., Nicklen, S., Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74, 5463–5467.

    Article  CAS  PubMed  Google Scholar 

  5. Marsh, S. (2007) Pyrosequencing Protocols. Methods in Molecular Biology 373, Humana Press, Totowa, NJ.

    Google Scholar 

  6. Wasson, J. (2007) Allele quantification and DNA pooling methods. Methods Mol Biol 373, 63–74.

    CAS  PubMed  Google Scholar 

  7. Pielberg, G., Day, A. E., Plastow, G. S., et al. (2003) A sensitive method for detecting variation in copy numbers of duplicated genes. Genome Res 13, 2171–2177.

    Article  CAS  PubMed  Google Scholar 

  8. Deutsch, S., Choudhury, U., Merla, G., et al. (2004) Detection of aneuploidies by paralogous sequence quantification. J Med Genet 41, 908–915.

    Article  CAS  PubMed  Google Scholar 

  9. Colella, S., Shen, L., Baggerly, K. A., et al. (2003) Sensitive and quantitative universal Pyrosequencing methylation analysis of CpG sites. Biotechniques 35, 146–150.

    CAS  PubMed  Google Scholar 

  10. Tost, J., Dunker, J., Gut, I. G. (2003) Analysis and quantification of multiple methylation variable positions in CpG islands by Pyrosequencing. Biotechniques 35, 152–156.

    CAS  PubMed  Google Scholar 

  11. Uhlmann, K., Brinckmann, A., Toliat, M. R., et al. (2002) Evaluation of a potential epigenetic biomarker by quantitative methyl-single nucleotide polymorphism analysis. Electrophoresis 23, 4072–4079.

    Article  CAS  PubMed  Google Scholar 

  12. Frommer, M., McDonald, L. E., Millar, D. S., et al. (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 89, 1827–1831.

    Article  CAS  PubMed  Google Scholar 

  13. Dupont, J. M., Tost, J., Jammes, H., et al. (2004) De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal Biochem 333, 119–127.

    Article  CAS  PubMed  Google Scholar 

  14. Chelbi, S. T., Mondon, F., Jammes, H., et al. (2007) Expressional and epigenetic alterations of placental serine protease inhibitors: SERPINA3 is a potential marker of preeclampsia. Hypertension 49, 76–83.

    Article  CAS  PubMed  Google Scholar 

  15. Dejeux, E., Audard, V., Cavard, C., et al. (2007) Rapid identification of promoter hypermethylation in hepatocellular carcinoma by pyrosequencing of etiologically homogeneous sample pools. J Mol Diagn 9, 510–520.

    Article  CAS  PubMed  Google Scholar 

  16. Issa, J. P., Gharibyan, V., Cortes, J., et al. (2005) Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J Clin Oncol 23, 3948–3956.

    Article  CAS  PubMed  Google Scholar 

  17. Yang, A. S., Estecio, M. R., Doshi, K., et al. (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32, e38.

    Article  PubMed  Google Scholar 

  18. Mirmohammadsadegh, A., Marini, A., Nambiar, S., et al. (2006) Epigenetic silencing of the PTEN gene in melanoma. Cancer Res 66, 6546–6552.

    Article  CAS  PubMed  Google Scholar 

  19. Xinarianos, G., McRonald, F. E., Risk, J. M., et al. (2006) Frequent genetic and epigenetic abnormalities contribute to the deregulation of cytoglobin in non-small cell lung cancer. Hum Mol Genet 15, 2038–2044.

    Article  CAS  PubMed  Google Scholar 

  20. Kwabi-Addo, B., Chung, W., Shen, L., et al. (2007) Age-related DNA methylation changes in normal human prostate tissues. Clin Cancer Res 13, 3796–3802.

    Article  CAS  PubMed  Google Scholar 

  21. Rodriguez-Canales, J., Hanson, J., Tangrea, M., et al. (2007) Identification of a unique epigenetic sub-microenvironment in prostate cancer. J Pathol 211, 410–419.

    Article  CAS  PubMed  Google Scholar 

  22. White, H. E., Durston, V. J., Harvey, J. F., et al. (2006) Quantitative analysis of SNRPN(correction of SRNPN) gene methylation by pyrosequencing as a diagnostic test for Prader-Willi syndrome and Angelman syndrome. Clin Chem 52, 1005–1013.

    Article  CAS  PubMed  Google Scholar 

  23. Wong, H. L., Byun, H. M., Kwan, J. M., et al. (2006) Rapid and quantitative method of allele-specific DNA methylation analysis. Biotechniques 41, 734–739.

    Article  CAS  PubMed  Google Scholar 

  24. Tost, J., Gut, I. G. (2007) Analysis of gene-specific DNA methylation patterns by pyrosequencing technology. Methods Mol Biol 373, 89–102.

    CAS  PubMed  Google Scholar 

  25. Tost, J., El abdalaoui, H., Gut, I.G. (2006) Serial pyrosequencing for quantitative DNA methylation analysis. Biotechniques 40, 721–726.

    Article  CAS  PubMed  Google Scholar 

  26. Li, L. C., Dahiya, R. (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18, 1427–1431.

    Article  CAS  PubMed  Google Scholar 

  27. Dunker, J., Larsson, U., Petersson, D., et al. (2003) Parallel DNA template preparation using a vacuum filtration sample transfer device. Biotechniques 34, 862–868.

    CAS  PubMed  Google Scholar 

  28. Aranyi, T., Varadi, A., Simon, I., et al. (2006) The BiSearch web server. BMC Bioinformatics 7, 431.

    Article  PubMed  Google Scholar 

  29. Warnecke, P. M., Stirzaker, C., Melki, J. R., et al. (1997) Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Res 25, 4422–4426.

    Article  CAS  PubMed  Google Scholar 

  30. Tetzner, R., Dietrich, D., Distler, J. (2007) Control of carry-over contamination for PCR-based DNA methylation quantification using bisulfite treated DNA. Nucleic Acids Res 35, e4.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the French Ministry of Research and the European Commission under the Integrated Project “MolPage” (contract number LSHG-CT-2004-512966).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dejeux, E., abdalaoui, H.E., Gut, I.G., Tost, J. (2009). Identification and Quantification of Differentially Methylated Loci by the Pyrosequencing™ Technology. In: Tost, J. (eds) DNA Methylation. Methods in Molecular Biology, vol 507. Humana Press. https://doi.org/10.1007/978-1-59745-522-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-522-0_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-61-9

  • Online ISBN: 978-1-59745-522-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics