Skip to main content

Fluorescence Resonance Energy Transfer to Characterize Cholesterol-Induced Domains

  • Protocol
Methods in Membrane Lipids

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 400))

Abstract

Cholesterol is a major component of mammalian cell membranes. It has remarkable effects on the properties of phospholipids bilayers, and is implicated in the lipid raft model. Depending on the membrane composition, cholesterol-containing bilayers can exist either as single phase or as mixture of coexisting phases. These are organized in domains of variant size determined by composition, but can be smaller than the optical microscopy resolution limit. This chapter describes a methodology based on fluorescence resonance energy transfer, which is sensitive to phase separation and can provide estimates of domain size in these usually hard to characterize systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smaby, J. M., Momsen, M. M., Brockman, H. L., and Brown, R. E. (1997) Phosphatidylcholine acyl unsaturation modulates the decrease in interfacial elasticity induced by cholesterol. Biophys. J. 73, 1492–1505.

    Article  PubMed  CAS  Google Scholar 

  2. Xiang, T.-X. and Anderson, B. D. (1997) Permeability of acetic acid across gel and liquid-crystalline lipid bilayers conforms to free-surface-area theory. Biophys. J. 72, 223–237.

    Article  PubMed  CAS  Google Scholar 

  3. Lafleur, M., Cullis, P. R., and Bloom, M. (1990) Modulation of the orientational order profile of the lipid acyl chain in the L alpha phase. Eur. Biophys. J. 19, 55–62.

    Article  PubMed  CAS  Google Scholar 

  4. Méléard, P., Gerbeaud, C., Pott, T., et al. (1997) Bending elasticities of model membranes: influences of temperature and sterol content. Biophys. J. 72, 2616–2629.

    Article  PubMed  Google Scholar 

  5. Ipsen, J. H., Karlström, G., Mouritsen, O. G., Wennerström, H., and Zuckermann, M. J. (1987) Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim. Biophys. Acta 905, 162–172.

    Article  PubMed  CAS  Google Scholar 

  6. Vist, M. R. and Davis, J. H. (1990) Phase equilibria of cholesterol/DPPC mixtures: 2H-NMR and differential scanning calorimetry. Biochemistry 29, 451–464.

    Article  PubMed  CAS  Google Scholar 

  7. Almeida, P. F. F., Vaz, W. L. C., and Thompson, T. E. (1992) Lateral diffusion in the liquid phases of dimirystoylphosphatidylcholine/cholesterol bilayers: a free volume analysis. Biochemistry 31, 6739–6747.

    Article  PubMed  CAS  Google Scholar 

  8. Mateo, C. R., Acuña, A. U., and Brochon, J.-C. (1995) Liquid-crystalline phases of cholesterol/lipid bilayers as revealed by the fluorescence of trans-parinaric acid. Biophys. J. 68, 978–987.

    Article  CAS  Google Scholar 

  9. Simons, K. and Ikonen, I. (1997) Functional rafts in cell membranes. Nature 387, 569–572.

    Article  PubMed  CAS  Google Scholar 

  10. Giocondi, M.-C., Vié, V., Lesniewska, E., Goudonnet, J.-P., and Le Grimellec, C. (2000) In situ imaging of detergent-resistant membranes by atomic force microscopy. J. Struct. Biol. 131, 38–43.

    Article  PubMed  CAS  Google Scholar 

  11. Thomas, J. L., Howloka, D., Baird, B., and Webb, W. W. (1994) Large-scale co-aggregation of fluorescent lipid probes with cell surface proteins. J. Cell Biol. 126, 795–802.

    Article  Google Scholar 

  12. Zurzolo, C., van Meer, G., and Mayor, S. (2003) The order of rafts. Conference on microdomains, lipid rafts and caveolae. EMBO Rep. 4, 1117–1121.

    Article  PubMed  CAS  Google Scholar 

  13. Pralle, A., Keller, P., Florin, E.-L., Simons, K., and Hörber, J. K. H. (2000) Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997–1007.

    Article  PubMed  CAS  Google Scholar 

  14. Dietrich, C., Bagatolli, L. A., Volovyk, Z. N., et al. (2001) Lipid rafts reconstituted in model membranes. Biophys. J. 80, 1417–1428.

    Article  PubMed  CAS  Google Scholar 

  15. Dietrich, C., Volovyk, Z. N., Levi, M., Thompson, N. L., and Jacobson, K. (2001) Partitioning of Thy-1, GM1 and crossed-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc. Natl. Acad. Sci. USA 98, 10,642–10,647.

    Article  PubMed  CAS  Google Scholar 

  16. Ribi, H. O., Ludwig, D. S., Mercer, K. L., Schoolnik, G. K., and Kornberg, R. D. (1988) Three-dimensional structure of cholera toxin penetrating a lipid membrane. Science 239, 1272–1276.

    Article  PubMed  CAS  Google Scholar 

  17. Loura, L. M. S., Fedorov, A., and Prieto, M. (2001) Fluid-fluid membrane microheterogeneity: a fluorescence resonance energy transfer study. Biophys. J. 80, 776–788.

    Article  PubMed  CAS  Google Scholar 

  18. Davenport, L. (1997) Fluorescence probes for studying membrane heterogeneity. Methods Enzymol. 278, 487–512.

    Article  PubMed  CAS  Google Scholar 

  19. de Almeida, R. F. M., Fedorov, A., and Prieto, M. (2003) Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys. J. 85, 2406–2416.

    Article  PubMed  Google Scholar 

  20. de Almeida, R. F. M., Loura, L. M. S., Fedorov, A., and Prieto, M. (2005) Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study. J. Mol. Biol. 346, 1109–1120.

    Article  PubMed  Google Scholar 

  21. O’Connor, D. V. and Philips, D. (1984) Time-correlated single photon counting. Academic Press, New York, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Loura, L.M.S., Prieto, M. (2007). Fluorescence Resonance Energy Transfer to Characterize Cholesterol-Induced Domains. In: Dopico, A.M. (eds) Methods in Membrane Lipids. Methods in Molecular Biology™, vol 400. Humana Press. https://doi.org/10.1007/978-1-59745-519-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-519-0_33

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-662-7

  • Online ISBN: 978-1-59745-519-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics