Prediction of Structural Noncoding RNAs With RNAz

  • Stefan Washietl
Part of the Methods in Molecular Biology™ book series (MIMB, volume 395)


The function of many noncoding RNAs (ncRNAs) depend on a defined secondary structure. RNAz detects evolutionarily conserved and thermodynamically stable RNA secondary structures in multiple sequence alignments and, thus, efficiently filters for candidate ncRNAs. In this chapter, we provide a step-by-step guide on how to use RNAz. Starting with basic concepts, we also cover advanced analysis techniques and, as an example for a large scale application, demonstrate a complete screen of the Saccharomyces cerevisiae genome.

Key Words

Noncoding RNA gene finding conserved RNA secondary structure RNA structure prediction 



The author thanks Ivo L. Hofacker and Peter F. Stadler for helpful discussions and assistance during the development of RNAz. This work was supported by Austrian GEN-AU project “noncoding RNA.”


  1. 1.
    Frith, M. C., Pheasant, M., and Mattick, J. S. (2005) The amazing complexity of the human transcriptome. Eur. J. Hum. Genet. 13, 894–897.CrossRefPubMedGoogle Scholar
  2. 2.
    Martens, J. A., Laprade, L., and Winston, F. (2004) Intergenic transcription is required to repress the Saccheromyces cerevisiae SER3 gene. Nature 429, 571–574.CrossRefPubMedGoogle Scholar
  3. 3.
    Chooniedass-Kothari, S., Emberley, E., Hamedani, M. K., et al. (2004) The steroid receptor RNA activator is the first functional RNA encoding a protein. FEBS Lett 566, 43–47.CrossRefPubMedGoogle Scholar
  4. 4.
    Rivas, E. and Eddy, S. R. (2001) Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinformatics 2, 8.CrossRefPubMedGoogle Scholar
  5. 5.
    Rivas, E., Klein, R. J., Jones, T. A., and Eddy, S. R. (2001) Computational identification of noncoding RNAs in E. coli by comparative genomics. Curr. Biol. 11, 1369–1373.CrossRefPubMedGoogle Scholar
  6. 6.
    McCutcheon, J. P. and Eddy, S. R. (2003) Computational identification of non-coding RNAs in Saccharomyces cerevisiae by comparative genomics. Nucleic Acids Res. 31, 4119–4128.CrossRefPubMedGoogle Scholar
  7. 7.
    Washietl, S., Hofacker, I. L., and Stadler, P. F. (2005) Fast and reliable prediction of noncoding RNAs. Proc. Natl. Acad. Sci. USA 102, 2454–2459.CrossRefPubMedGoogle Scholar
  8. 8.
    Zuker, M. and Stiegler, P. (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148.CrossRefPubMedGoogle Scholar
  9. 9.
    Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., and Schuster, P. (1994) Fast folding and comparison of RNA secondary structures. Monatsh. Chem. 125, 167–188.CrossRefGoogle Scholar
  10. 10.
    Hofacker, I. L., Fekete, M., and Stadler, P. F. (2002) Secondary structure prediction for aligned RNA sequences. J. Mol. Biol. 319, 1059–1066.CrossRefPubMedGoogle Scholar
  11. 11.
    Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.CrossRefPubMedGoogle Scholar
  12. 12.
    Gardner, P. P., Wilm, A., and Washietl, S. (2005) A benchmark of multiple sequence alignment programs upon structural RNAs. Nucleic Acids Res. 33, 2433–2439.CrossRefPubMedGoogle Scholar
  13. 13.
    Steigele, S., Huber, W., Stocists, C., Stadler, P. F., and Nieselt, K. (2007) Comparative Analysis of Structured RNAs in S. cerevisiae Indicates a Multitude of Different Functions. BMC Genomics, in press.Google Scholar
  14. 14.
    Hofacker, I. L., Priwitzer, B., and Stadler, P. F. (2004) Prediction of locally stable RNA secondary structures for genome-wide surveys. Bioinformatics 20, 186–190.CrossRefPubMedGoogle Scholar
  15. 15.
    Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S. R., and Bateman, A. (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121–D124.CrossRefPubMedGoogle Scholar
  16. 16.
    Eddy, S. R. (2002) A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure. BMC Bioinformatics 3, 18.CrossRefPubMedGoogle Scholar
  17. 17.
    Washietl, S. and Hofacker, I. L. (2004) Consensus folding of aligned sequences as a new measure for the detection of functional RNAs by comparative genomics. J. Mol. Biol. 342, 19–30.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Stefan Washietl
    • 1
  1. 1.Department of Theoretical ChemistryUniversity of ViennaViennaAustria

Personalised recommendations