Skip to main content

Electro-Formation and Fluorescence Microscopy of Giant Vesicles With Coexisting Liquid Phases

  • Protocol
Lipid Rafts

Part of the book series: Methods in Molecular Biology ((MIMB,volume 398))

Abstract

Giant unilamellar vesicles (GUVs) are routinely used to study coexisting liquid phases in bilayer membranes. Liquid domains are observed in a wide variety of ternary GUV membranes containing phospholipids and cholesterol, and are thought to model raft domains in cell membranes. GUVs are attractive model systems because vesicles are easily prepared using standard and inexpensive laboratory equipment, and phase-separated vesicles can be visualized using optical microscopy. In this chapter, a detailed method is presented to form and view 10–100-µm diameter single-walled vesicles of charged or uncharged lipid mixtures. GUVs can be visualized by fluorescence microscopy and methods are presented to measure miscibility transition temperatures and to distinguish solid (gel) and liquid domains. Numerous experimental artifacts associated with GUV preparation and viewing are discussed, including the effects of nonideal growth conditions and perturbations of fluorescent probes and other impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bagatolli, L. A. and Gratton, E. (2000) Two Photon Fluoreescence Microscopy of Coexisting lipid Domains in Giant Unilamellar Vesicles of Binary Phospholipid Mixtures. Biophys. J. 78(1), 290–305.

    Article  CAS  PubMed  Google Scholar 

  2. Dietrich, C., Bagatolli, L. A., Volovyk, Z. N., et al. (2001) Lipid Rafts Reconstituted in Model Membranes. Biophys. J. 80, 1417–1428.

    Article  CAS  PubMed  Google Scholar 

  3. Feigenson, G. W. and Buboltz, J. T. (2001) Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. Biophys. J. 80(6), 2775–2788.

    Article  CAS  PubMed  Google Scholar 

  4. Korlach, J., Schwille, P., Webb, W. W., and Feigenson, G. W. (1999) Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. USA 96(15), 8461–8466.

    Article  CAS  PubMed  Google Scholar 

  5. Parasassi, T., Gratton, E., Yu, W. M., Wilson, P., and Levi, M. (1997) Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Biophys. J. 72(6), 2413–2429.

    Article  CAS  PubMed  Google Scholar 

  6. Veatch, S. L. and Keller, S. L. (2005) Seeing Spots: Complex phase behaviour in simple membranes. Biochem. Biophys. Acta 1746(3),172–185.

    Article  CAS  PubMed  Google Scholar 

  7. Baumgart, T., Hess, S. T., and Webb, W. W. (2003) Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425(6960), 821–824.

    Article  CAS  PubMed  Google Scholar 

  8. Kaizuka, Y. and Groves, J. T. (2004) Structure and dynamics of supported inter-membrane junctions. Biophys. J. 86(2), 905–912.

    Article  CAS  PubMed  Google Scholar 

  9. Puff, N., Lamaziere, A., Seigneuret, M., Trugnan, G., and Angelova, M. I. (2005) HDLs induce raft domain vanishing in heterogeneous giant vesicles. Chem. Phys. Lipids 133(2), 195–202.

    Article  CAS  PubMed  Google Scholar 

  10. Veatch, S. L. and Keller, S. L. (2002) Lateral Organisation in Lipid Membranes Containing Cholesterol. Phys. Rev. Lett. 89(26), 268, 101.

    Article  Google Scholar 

  11. Veatch, S. L. and Keller, S. L. (2003) Seperation of Liquid Phases in Giant Vesicles of Ternary Mixtures of Phospholipids and Cholesterol. Biophys. J. 85(5), 3074–3083.

    Article  CAS  PubMed  Google Scholar 

  12. Veatch, S. L., Polozov, I. V., Gawrisch, K., and Keller, S. L. (2004) Liquid domains in vesicles investigated by NMR and fluorescence Microscopy. Biophys. J. 86(5), 2910–2922.

    Article  CAS  PubMed  Google Scholar 

  13. Kahya, N., Scherfeld, D., Bacia, K., Poolman, B., and Schwille, P. (2003) Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J. Biol. Chem. 278(30), 28,109–28,115.

    Article  CAS  PubMed  Google Scholar 

  14. Baumgart, T., Das, S., Webb, W. W., and Jenkins, J. T. (2005) Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys. J. 89(2), 1067–1080.

    Article  CAS  PubMed  Google Scholar 

  15. Kahya, N., Brown, D. A., and Schwille, P. (2005) Raft partitioning and dynamic behaviour of human placental alkaline phosphatase in giant unilamellar vesicles. Biochemistry 44(20), 7479–7489.

    Article  CAS  PubMed  Google Scholar 

  16. Bacia, K., Schuette, C. G., Kahya, N., Jahn, R., and Schwille, P. (2004) SNAREs prefer liquid-disodered over “raft” (liquid-ordered) domains when reconstituted into giant unilamellar vesicles. J. Biol. Chem. 279(36), 37,951–37,955.

    Article  CAS  PubMed  Google Scholar 

  17. Hammond, A. T., Heberle, F. A., Baumgart, T., Holowka, D., Baird, B., and Feigenson, G. W. (2005) Crosslinking a lipid raft component triggers liquid ordered-liquid disordered phase separation in model plasma membranes. Proc. Natl. Acad. Sci. USA 102(18), 6320–6325.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, A. P. C. Personal communication.

    Google Scholar 

  19. Bernardino, S. J., Perez-Gil, J., Simonsen, A. C., and Bagatalli, L. A. (2004) Cholesterol rules: direct observation of the coexistence of two fluid phases in native pulmonary surfactant membranes at physiological temperatures. J. Biol. Chem. 279(39), 40,715–40,722.

    Article  Google Scholar 

  20. Edidin, M. (2003) The State of Lipid Rafts: From Model Membranes to Cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257–283.

    Article  CAS  PubMed  Google Scholar 

  21. Munro, S. (2003) Lipid rafts: elusive or illusive? Cell 115(4), 377–388.

    Article  CAS  PubMed  Google Scholar 

  22. Veatch, S. L., Gawrisch, K., and Keller, S. L. (2006) Closed-loop miscibility gap and quantitative tie-lines in ternary membranes containing diphytanoyl PC. Biophys. J. 90(12), 4428–4436.

    Article  CAS  PubMed  Google Scholar 

  23. Angelova, M. I., Soleau, S., Mekeard, P., Faucon, J. F., and Bothorel, P. (1992) Preparation of giant vesicles by external AC electric fields. Kinetics and application. Progr. Colloid Polym. Sci. 89, 127–131.

    Article  CAS  Google Scholar 

  24. Mathivet, L., Cribier, S., and Devaux, F. (1996) Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field. Biophys. J. 70, 1112–1121.

    Article  CAS  PubMed  Google Scholar 

  25. Veatch, S. L. (2004) Liquid Immiscibility in Model Bilayer Lipid Membranes, University of Washington, Seattle, WA, 172 p.

    Google Scholar 

  26. Veatch. S. L. and Keller, S. L. (2005) Miscibility phase diagrams of giant vesicles containing sphingomyelin. Phys. Rev. Lett. 94(14), 148,101.

    Article  Google Scholar 

  27. Eckfeldt, E. L. and Lucasse, W. W. (1943) The Liquid-Liquid Phase Equilibria of the System Cyclohexane-ethyl Alcohol in the Presence of Various Salts as Third Components. Phys. Chem. 47(2), 164–183.

    Article  CAS  Google Scholar 

  28. Ambroggio, E. E., Kim, D. H., Separovic, F., et al. (2005) Surface behavior and lipid interaction of Alzheimer beta-amyloid peptide 1-42: a membrane-distupting peptide. Biophys. J. 88(4), 2706–2713.

    Article  CAS  PubMed  Google Scholar 

  29. Evans, E., Hwinrich, V., Ludwig, F., and Rawicz,W. (2003) Dynamic tension spectroscopy and strength of biomembranes. Biophys. J. 85(4), 2342–2350.

    Article  CAS  PubMed  Google Scholar 

  30. Bacia, K., Schwille, P., and Kurzchalia, T. (2005) Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc. Natl. Acad. Sci. USA 102(9), 3272–3277.

    Article  CAS  PubMed  Google Scholar 

  31. Bagatolli, L. A. (2003) Direct observation of lipid domains in free standing bilayers: from simple t complex lipid mixtures. Chem. Phys. Lipids 122(1–2), 137–145.

    Article  CAS  PubMed  Google Scholar 

  32. Jin, L., Millard, A. C., Wuskell, J. P., et al. (2006) Characterzation and application of a new optical probe for membrane lipid domains. Biophys. J. 90(7), 2563–2575.

    Article  CAS  PubMed  Google Scholar 

  33. Huang, J., Bubolts, J. T., and Feigenson, G. W. (1999) Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers. Biochim. Biophys. Acta 1417(1), 89–100.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Veatch, S.L. (2007). Electro-Formation and Fluorescence Microscopy of Giant Vesicles With Coexisting Liquid Phases. In: McIntosh, T.J. (eds) Lipid Rafts. Methods in Molecular Biology, vol 398. Humana Press. https://doi.org/10.1007/978-1-59745-513-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-513-8_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-729-7

  • Online ISBN: 978-1-59745-513-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics