Skip to main content

Overview of Membrane Rafts

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 398))

Abstract

Transient lateral microdomains (rafts) in cell membranes have been postulated to perform a number of important functions in normal cells, and are also thought to be critically involved in several pathological conditions. However, there are still a number of fundamental unanswered questions concerning the composition, size, dynamics, and stability of membrane rafts. These questions are currently being addressed by a number of sophisticated biophysical, biochemical, and computational methodologies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gorter, E. and Grendel, F. (1925) On Bimolecular Layers of Lipoids on the Chromocytes of the Blood. J. Exp. Med. 41, 439–443.

    Article  CAS  PubMed  Google Scholar 

  2. Danielli, J. F. and Davson, J. (1935) A contribution to the theory of permeability of thin films. J. Cell Comp. Physiol. 5, 495–508.

    Article  CAS  Google Scholar 

  3. Singer, S. J. and Nicolson, G. L. (1972) The fluid mosaic model of the structure of cell membranes. Science 175, 720–731.

    Article  CAS  PubMed  Google Scholar 

  4. Keenan, T. W. and Morre, D. J. (1970) Phospholipid class and fatty acid composition of golgi apparatus isolated from rat liver and comparison with other cell fractions. Biochemistry 9, 19–25.

    Article  CAS  PubMed  Google Scholar 

  5. Fridriksson, E. K., Shipkova, P. A., Sheets, E. D., Holowka, D., Baird, B., and McLafferty, F. W. (1999) Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem highresolution mass spectrometry. Biochemistry 38, 8056–8063.

    Article  CAS  PubMed  Google Scholar 

  6. Yorek, M. A. (1993) Biological distribution, in Phospholipids Handbook, (Cevc, G. S., ed.), Marcel Dekker, Inc., New York, pp. 745–775.

    Google Scholar 

  7. van Helvoort, A. and van Meer, G. (1995) Intracellular lipid heterogeneity caused by topolgy of synthesis and specifity in transport. Examples: sphingolipids. FEBS Lett. 369, 18–21.

    Article  PubMed  Google Scholar 

  8. Simons, K. and Ikonen, E. (1997) Functional rafts in cell membranes. Nature 387, 569–572.

    Article  CAS  PubMed  Google Scholar 

  9. Brown, D. A. and London, E. (2000) Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J. Biol. Chem. 275, 17,221–17,224.

    Article  CAS  PubMed  Google Scholar 

  10. Gkantiragas, I., Brugger, B., Stuven, E., et al. (2001) Sphingomyelin-enriched microdomains at the Golgi complex. Mol. Biol. Cell 12, 1819–1833.

    CAS  PubMed  Google Scholar 

  11. London, E. and Brown, D. A. (2000) Insolubility of lipids in Triton X-100: physical origin and relationship to spingolipid/cholesterol membrane domains (rafts). Biochim. Biophys. Acta. 1508, 182–195.

    Article  CAS  PubMed  Google Scholar 

  12. Arni, S., Keilbaugh, S. A., Ostermeyter, A. G., and Brown, D. A. (1998) Association of GAP-43 with detergent-resistant membranes requires two palmitoylated cysteine residues. J. Biol. Chem. 273, 28,478–28,485.

    Article  CAS  PubMed  Google Scholar 

  13. Melkonian, K. A., Ostermeyer, A. G., Chen, J. Z., Roth, M. G., and Brown, D. A. (1999) Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J. Biol. Chem. 274, 3910–3917.

    Article  CAS  PubMed  Google Scholar 

  14. Moffett, S., Brown, D. A., and Linder, M. E. (2000) Lipid-dependent targeting of G proteins into rafts. J. Biol. Chem. 275, 2191–2198.

    Article  CAS  PubMed  Google Scholar 

  15. Benting, J., Rietveld, A., Ansorge, I., and Simons, K. (1999) Acyl and alkyl chain length of GPI-anchors is critical for raft association in vitro. FEBS Lett. 462, 47–50.

    Article  CAS  PubMed  Google Scholar 

  16. Sharma, P., Varma, R., Sarasij, R. C., et al. (2004) Nanoscale Organization of Multiple GPI-Anchored Proteins in Living Cell Membranes. Cell 116, 577–589.

    Article  CAS  PubMed  Google Scholar 

  17. Field, K. A., Holowka, D., and Baird, B. (1997) Compartmentalized activation of the high affinity immunoglubulin E receptor within membrane domains. J. Biol. Chem. 272, 4276–4280.

    Article  CAS  PubMed  Google Scholar 

  18. Janes, P. W., Ley, S. C., and Magee, A. I. (1999) Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J. Cell Biol. 147, 447–461.

    Article  CAS  PubMed  Google Scholar 

  19. Ridyard, M. S. and Robbins, S. M. (2003) Fibroblast growth factor-2-induced signaling through lipid raft-associated fibroblast growth factor receptor substrate 2 (FRS2). J. Biol. Chem. 278, 13,803–13,809.

    Article  CAS  PubMed  Google Scholar 

  20. Schubert, A. L., Schubert, W., Spray, D. C., and Lisanti, M. P. (2002) Connexin family members target to lipid raft domains and interact with caveolin-1. Biochemistry 41, 5754–5764.

    Article  CAS  PubMed  Google Scholar 

  21. Wong, W. and Schlichter, L. C. (2004) Differential recruitment of Kv1.4 and Kv4.2 to lipid rafts by PSD-95. J. Biol. Chem. 279, 444–452.

    Article  CAS  PubMed  Google Scholar 

  22. Ishikawa, Y., Yuan, Z., Inoue, N., et al. (2005) Identification of AQP5 in lipid rafts and its translocation to apical membranes by activation of M3 mAChRs in interlobular ducts of rat parotid gland. Am. J. Physiol. Cell Physiol. 289, C1303–C1311.

    Article  CAS  PubMed  Google Scholar 

  23. Young, R. M., Zheng, X., Holowka, D., and Baird, B. (2005) Reconstitution of regulated phosphorylation of FcepsilonRI by a lipid raft-excluded protein-tyrosine phosphatase. J. Biol. Chem. 280, 1230–1235.

    Article  CAS  PubMed  Google Scholar 

  24. Simons, K. and Toomre, D. (2000) Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39.

    Article  CAS  PubMed  Google Scholar 

  25. Chamberlain, L. H., Burgoyne, R. D., and Gould, G. W. (2001) SNARE proteins are highly enriched in lipid rafts in PC12 cells: implications for the spatial control of exocytosis. Proc. Natl. Acad. Sci. USA 98, 5619–5624.

    Article  CAS  PubMed  Google Scholar 

  26. Lang, T., Bruns, D., Wenzel, D., et al. (2001) SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J. 20, 2202–2213.

    Article  CAS  PubMed  Google Scholar 

  27. Caroni, P. (2001) New EMBO member’s review: actin cytoskeleton regulation through modulation of PI(4,5)P(2) rafts. EMBO J. 20, 4332–4336.

    Article  CAS  PubMed  Google Scholar 

  28. Laux, T., Fukami, K., Thelen, M., Golub, T., Frey, D., and Caroni, P. (2000) GAP43, MARCKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J. Cell Biol. 149, 1455–1472.

    Article  CAS  PubMed  Google Scholar 

  29. Simons, K. and van Meer, G. (1988) Lipid sorting in epithelial cells. Biochemistry 27, 6197–6202.

    Article  CAS  PubMed  Google Scholar 

  30. Simons, K. and Ikonen, E. (2000) How cells handle cholesterol. Science 290, 1721–1726.

    Article  CAS  PubMed  Google Scholar 

  31. Ikonen, E. (2001) Roles of lipid rafts in membrane transport. Curr. Opin. Cell Biol. 13, 470–477.

    Article  CAS  PubMed  Google Scholar 

  32. Sharma, D. K., Choudhury, A., Singh, R. D., Wheatley, C. L., Marks, D. L., and Pagano, R. E. (2003) Glycosphingolipids internalized via caveolar-related endocytosis rapidly merge with the clathrin pathway in early endo-somes and form microdomains for recycling. J. Biol. Chem. 278, 7564–7572.

    Article  CAS  PubMed  Google Scholar 

  33. Duncan, M. J., Shin, J. S., and Abraham, S. N. (2002) Microbial entry through caveolae: variations on a theme. Cell Microbiol. 4, 783–791.

    Article  CAS  PubMed  Google Scholar 

  34. Lafont, F., Tran Van Nhieu, G., Hanada, K., Sansonetti, P., and van der Goot, F. G. (2002) Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44-IpaB interaction. EMBO J. 21, 4449–4457.

    Article  CAS  PubMed  Google Scholar 

  35. Campbell, S. M., Crowe, S. M., and Mak, J. (2001) Lipid rafts and HIV-1: from viral entry to assembly of progeny virions. J. Clin. Virol. 22, 217–227.

    Article  CAS  PubMed  Google Scholar 

  36. Manes, S., del Real, G., and Martinez, A. C. (2003) Pathogens: raft hijackers. Nat. Rev. Immunol. 3, 557–568.

    Article  CAS  PubMed  Google Scholar 

  37. Ehehalt, R., Keller, P., Haass, C., Thiele, C., and Simons, K. (2003) Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J. Cell Biol. 160, 113–123.

    Article  CAS  PubMed  Google Scholar 

  38. Vetrivel, K. S., Cheng, H., Lin, W., et al. (2004) Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes. J. Biol. Chem. 279, 44,945–44,954.

    Article  CAS  PubMed  Google Scholar 

  39. Ahmed, S. N., Brown, D. A., and London, E. (1997) On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquidordered lipid phase in model membranes. Biochemistry 36, 10,944–10,953.

    Article  CAS  PubMed  Google Scholar 

  40. Rinia, H. A. and deKruijff, B. (2001) Imaging domains in model membranes with atomic force microscopy. FEBS Lett. 504, 194–199.

    Article  CAS  PubMed  Google Scholar 

  41. Dietrich, C., Bagatolli, L. A., Volovyk, Z. N., et al. (2001) Lipid rafts reconstituted in model membranes. Biophys. J. 80, 1417–1428.

    Article  CAS  PubMed  Google Scholar 

  42. Samsonov, A. V., Mihalyov, I., and Cohen, F. S. (2001) Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes. Biophys. J. 81, 1486–1500.

    Article  CAS  PubMed  Google Scholar 

  43. Veatch, S. L. and Keller, S. L. (2003) Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85, 3074–3083.

    Article  CAS  PubMed  Google Scholar 

  44. Veatch, S. L., Polozov, I. V., Gawrisch, K., and Keller, S. L. (2004) Liquid domains in vesicles investigated by NMR and fluorescence microscopy. Biophys. J. 86, 2910–2922.

    Article  CAS  PubMed  Google Scholar 

  45. Elliott, M. H., Fliesler, S. J., and Ghalayini, A. J. (2003) Cholesterol-Dependent Association of Caveolin-1 with the Transducin alpha Subunit in Bovine Photoreceptor Rod Outer Segments: Disruption by Cyclodextrin and Guanosine 5′-O-(3-Thiotriphosphate). Biochemistry 42, 7892–7903.

    Article  CAS  PubMed  Google Scholar 

  46. Chini, B. and Parenti, M. (2004) G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J. Mol. Endocrinol. 32, 325–338.

    Article  CAS  PubMed  Google Scholar 

  47. Kusumi, A., Koyama-Honda, I., and Suzuki, K. (2004) Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 5, 213–230.

    Article  CAS  PubMed  Google Scholar 

  48. van Meer, G. (2004) Invisible rafts at work. Traffic 5, 211–212.

    Article  PubMed  Google Scholar 

  49. Hammond, A. T., Heberle, F. A., Baumgart, T., Holowka, D., Baird, B., and Feigenson, G. W. (2005) Crosslinking a lipid raft component triggers liquid ordered-liquid disordered phase separation in model plasma membranes. Proc. Natl. Acad. Sci. USA 102, 6320–6325.

    Article  CAS  PubMed  Google Scholar 

  50. Douglass, A. D. and Vale, R. D. (2005) Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950.

    Article  CAS  PubMed  Google Scholar 

  51. Sieber, J. J., Willig, K. I., Heintzmann, R., Hell, S. W., and Lang, T. (2006) The SNARE Motif Is Essential for the Formation of Syntaxin Clusters in the Plasma Membrane. Biophys. J. 90, 2843–2851.

    Article  CAS  PubMed  Google Scholar 

  52. Schroeder, R., London, E., and Brown, D. (1994) Interactions between saturated acyl chains confer detergent resistence on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins; GPI-anchored proteins in liposomes and cells show similar behavior. Proc. Natl. Acad. Sci. USA 91, 12,130–12,134.

    Article  CAS  PubMed  Google Scholar 

  53. Brown, R. E. (1998) Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J. Cell Sci. 111, 1–9.

    CAS  PubMed  Google Scholar 

  54. Wang, T.-Y., Leventis, R., and Silvius, J. R. (2000) Fluorescence-based evaluation of the partitioning of lipids and lipidated peptides into liquid-ordered lipid microdomains: a model for molecular partitioning into “lipid rafts.” Biophys. J. 79, 919–933.

    Article  CAS  PubMed  Google Scholar 

  55. Dietrich, C., Volovyk, Z. N., Levi, M., Thompson, N. L., and Jacobson, K. (2001) Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc. Natl. Acad. Sci. USA 98, 10,642–10,647.

    Article  CAS  PubMed  Google Scholar 

  56. Khan, T. K., Yang, B., Thompson, N. L., Maekawa, S., Epand, R. M., and Jacobson, K. (2003) Binding of NAP-22, a Calmodulin-Binding Neuronal Protein, to Raftlike Domains in Model Membranes. Biochemistry 42, 4780–4786.

    Article  CAS  PubMed  Google Scholar 

  57. London, E. (2002) Insights into lipid raft structure and formation from experiments in model membranes. Curr. Opin. Struct. Biol. 12, 480–486.

    Article  CAS  PubMed  Google Scholar 

  58. McIntosh, T. J., Vidal, A., and Simon, S. A. (2003) Sorting of lipids and transmembrane peptides between detergent-soluble bilayers and detergent-resistant rafts. Biophys. J. 85, 1656–1666.

    Article  CAS  PubMed  Google Scholar 

  59. Kahya, N., Scherfeld, D., Bacia, K., Poolman, B., and Schwille, P. (2003) Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J. Biol. Chem. 278, 28,109–28,115.

    Article  CAS  PubMed  Google Scholar 

  60. Allende, D., Vidal, A., and McIntosh, T. J. (2004) Jumping to rafts: gatekeeper role of bilayer elasticity. Trends Biochem. Sci. 29, 325–330.

    Article  CAS  PubMed  Google Scholar 

  61. Mukherjee, S. and Maxfield, F. R. (2004) Membrane domains. Annu. Rev. Cell Dev. Biol. 20, 839–866.

    Article  CAS  PubMed  Google Scholar 

  62. Vidal, A. and McIntosh, T. J. (2005) Transbilayer Peptide Sorting between Raft and Nonraft Bilayers: Comparisons of Detergent Extraction and Confocal Microscopy. Biophys. J. 89, 1102–1108.

    Article  CAS  PubMed  Google Scholar 

  63. de Almeida, R. F., Loura, L. M., Fedorov, A., and Prieto, M. (2005) Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study. J. Mol. Biol. 346, 1109–1120.

    Article  PubMed  Google Scholar 

  64. Oradd, G., Westerman, P. W., and Lindblom, G. (2005) Lateral Diffusion Coefficients of Separate Lipid Species in a Ternary Raft-Forming Bilayer: A Pfg-NMR Multinuclear Study. Biophys. J. 89, 315–320.

    Article  PubMed  Google Scholar 

  65. London, E. (2005) How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells. Biochim. Biophys. Acta. 1746, 203–220.

    Article  CAS  PubMed  Google Scholar 

  66. Silvius, J. R. (2005) Partitioning of membrane molecules between raft and non-raft domains: Insights from model-membrane studies. Biochim. Biophys. Acta. 1746, 193–202.

    Article  CAS  PubMed  Google Scholar 

  67. Kenworthy, A. K. and Edidin, M. (1998) Distribution of glycosylphosphatidylinositolanchored protein at the apical surface of MDCK cells examined at a resolution of <100 å using imaging fluorescence resonance energy transfer. J. Cell Biol. 142, 69–84.

    Article  CAS  PubMed  Google Scholar 

  68. Anderson, R. G. and Jacobson, K. (2002) A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296, 1821–1825.

    Article  CAS  PubMed  Google Scholar 

  69. Edidin, M. (2003) The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257–283.

    Article  CAS  PubMed  Google Scholar 

  70. Lai, E. C. (2003) Lipid rafts make for slippery platforms. J. Cell Biol. 162, 365–370.

    Article  CAS  PubMed  Google Scholar 

  71. Pike, L. J. (2003) Lipid rafts: bringing order to chaos. J. Lipid Res. 44, 655–667.

    Article  CAS  PubMed  Google Scholar 

  72. Kenworthy, A. K., Petranova, N., and Edidin, M. (2000) High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell 11, 1645–1655.

    CAS  PubMed  Google Scholar 

  73. Munro, S. (2003) Lipid rafts: elusive or illusive? Cell 115, 377–388.

    Article  CAS  PubMed  Google Scholar 

  74. Laude, A. J. and Prior, I. A. (2004) Plasma membrane microdomains: organization, function and trafficking (Review). Mol. Membr. Biol. 21, 193–205.

    Article  CAS  PubMed  Google Scholar 

  75. McMullen, T. P. W., Lewis, R. N. A. H., and McElhaney, R. N. (2004) Cholesterol-phospholipid interactions, the liquid-ordered phase and lipid rafts in model and biological membranes. Curr. Opin. Coll. Interface Sci. 8, 459–468.

    Article  CAS  Google Scholar 

  76. Heerklotz, H. (2002) Triton promotes domain formation in lipid raft mixtures. Biophys. J. 83, 2693–2701.

    Article  CAS  PubMed  Google Scholar 

  77. Heerklotz, H., Szadkowska, H., Anderson, T., and Seelig, J. (2003) The sensitivity of lipid domains to small perturbations demonstrated by the effect of Triton. J. Mol. Biol. 329, 793–799.

    Article  CAS  PubMed  Google Scholar 

  78. Lichtenberg, D., Goni, F. M., and Heerklotz, H. (2005) Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 30, 430–436.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

McIntosh, T.J. (2007). Overview of Membrane Rafts. In: McIntosh, T.J. (eds) Lipid Rafts. Methods in Molecular Biology, vol 398. Humana Press. https://doi.org/10.1007/978-1-59745-513-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-513-8_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-729-7

  • Online ISBN: 978-1-59745-513-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics