Skip to main content

Salmonella Phages Examined in the Electron Microscope

  • Protocol
Salmonella

Part of the book series: Methods in Molecular Biology ((MIMB,volume 394))

Abstract

Out of 177 surveyed bacteriophages, 161 (91%) are tailed and belong to the Myoviridae, Siphoviridae, and Podoviridae families (43, 55, and 59 viruses, respectively). Sixteen filamentous or isometric phages are members of the Inoviridae, Leviviridae, Microviridae, and Tectiviridae families (9%). Many tailed phages belong to established phage genera (P22, T1, T5, and T7), which are widespread in enterobacteria and other Gram-negatives of the Proteobacteria phylum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D’Hérelle, F. (1918) Technique de la recherche du microbe filtrant bactériophage (Bacteriophagum intestinale). C.R. Soc. Biol. 81, 1160–1162.

    Google Scholar 

  2. Ackermann, H.-W. (2006) Frequency of morphological phage descriptions in the year 2005. Arch. Virol. 152, 227–243.

    Article  PubMed  Google Scholar 

  3. Ackermann, H.-W. and DuBow, M. S. (1987) Viruses of Prokaryotes, vol.. Natural Groups of Bacteriophages. CRC Press, Boca Raton, pp. 85–100.

    Google Scholar 

  4. Ackermann, H.-W., DuBow, M. S, Gershman, M., et al. (1997) Taxonomic changes in tailed phages of enterobacteria. Arch. Virol. 142, 1381–1390.

    Article  CAS  PubMed  Google Scholar 

  5. Ackermann, H.-W. (2006) Basic phage electron microscopy, in Bacteriophages: Methods and Protocols (Kropinski, A. M. and Clokie, M., eds.), Humana, Totowa, NJ, in print.

    Google Scholar 

  6. Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U., and Ball, L. A., eds. (2005) Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses. Academic Press/Elsevier, London, pp. 35–79.

    Google Scholar 

  7. Ackermann, H.-W., Berthiaume, L., and Kasatiya, S. S. (1972) Morphologie des phages de lysotypie de Salmonella paratyphi B (schéma de Felix et Callow). Can. J. Microbiol. 18, 77–81.

    Article  CAS  PubMed  Google Scholar 

  8. Lindberg, A. A. (1967) Studies of a receptor for Felix O-1 phage in Salmonella minnesota. J. Gen. Microbiol. 48, 225–233.

    CAS  PubMed  Google Scholar 

  9. Ackermann, H.-W. and Berthiaume, L. (1969) Ultrastructure des phages de lysotypie des Escherichia coli 0127:B8. Can. J. Microbiol. 15, 859–862.

    Article  CAS  PubMed  Google Scholar 

  10. Bliznichenko, A. G., Milyutin, V. N., Tokarev, S. A., and Kirdeev, V. K. (1972) Study of biological properties of two variants of Vi-typhoid phages, features of the structure and cycle of development (Russian). Vopr. Virusol. 17, 448–450.

    CAS  PubMed  Google Scholar 

  11. Nutter, R. L., Bullas, L. R., and Schultz, R. L. (1970) Some properties of five new Salmonella bacteriophages. J. Virol. 5, 754–764.

    CAS  PubMed  Google Scholar 

  12. Voelker, L., Sulakvelidze, A., and Ackermann, H.-W. (2005) Spontaneous tail length variation in a Salmonella myovirus. Virus Res. 114, 164–166.

    Article  CAS  PubMed  Google Scholar 

  13. Popovici, M., Szégli, L., Soare, L., et al. (1975) Caractéristiques des phages lysogènes de S. anatum. Arch. Roum. Pathol. Exp. Microbiol. 34, 223–230.

    Google Scholar 

  14. Slopek, S. and Krzywy, T. (1985) Morphology and ultrastructure of bacteriophages. An electron microscopical study. Arch. Immunol. Ther. Exp. 33, 1–217.

    CAS  Google Scholar 

  15. Bradley, D. E. and Kay, D. (1960) The fine structure of bacteriophages. J. Gen. Microbiol. 23, 553–563.

    Google Scholar 

  16. Yamamoto, N. (1969) Genetic evolution of bacteriophage. I. Hybrids between unrelated bacteriophages P22 and Fels 2. Proc. Natl. Acad. Sci. USA 62, 63–69.

    Article  CAS  PubMed  Google Scholar 

  17. Bullas, L. R., Mostaghimi, A. R., Arensdorf, J. J., Rajada, P. T., and Zuccarelli, A. J. (1991) Salmonella phage PSP3, another member of the P2-like phage group. Virology 185, 918–921.

    Article  CAS  PubMed  Google Scholar 

  18. Mirold, S., Rabsch, W., Rohde, M., et al. (1999) Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. Proc. Natl. Acad. Sci. USA 96, 9845–9850.

    Article  CAS  PubMed  Google Scholar 

  19. Ackermann, H.-W., Berthiaume, L., and Kasatiya, S. S. (1970) Ultrastructure of Vi phages I to VII of Salmonella typhi. Can. J. Microbiol. 16, 411–413.

    Article  CAS  PubMed  Google Scholar 

  20. Kwiatkowski, B. and Taylor, A. (1970) Two-step attachment of Vi-phage I to the bacterial surface. Acta Microbiol. Pol. A. 2, 13–30.

    CAS  PubMed  Google Scholar 

  21. Ackermann, H.-W. and Gershman, M. (1992) Morphology of phages of a general Salmonella typing set. Res. Virol. 143, 303–310.

    Article  CAS  PubMed  Google Scholar 

  22. Demczuk, W., Ahmed, R., and Ackermann, H.-W. (2004) Morphology of Salmonella enterica serovar Heidelberg typing phages. Can. J. Microbiol. 50, 873–875.

    Article  CAS  PubMed  Google Scholar 

  23. Williams, F. P. Jr. and Stetler, R. E. (1994) Detection of FRNA coliphages in groundwater: interference with the assay by somatic Salmonella bacteriophages. Lett. Appl. Microbiol. 19, 79–82.

    Article  Google Scholar 

  24. Ackermann, H.-W. and Nguyen, T.-M. (1983) Sewage coliphages investigated by electron microscopy. Appl. Environ. Microbiol. 45, 1049–1059.

    CAS  PubMed  Google Scholar 

  25. Moazamie, N., Ackermann, H.-W., and Murthy, M. R. V. (1979) Characterization of two Salmonella newport bacteriophages. Can. J. Microbiol. 25, 1063–1072.

    Article  CAS  PubMed  Google Scholar 

  26. Moazamie-Shamloo, N. (1976) étude de deux phages de Salmonella newport. Ph.D. thesis, Université Laval, Quebec, Canada, 152 p.

    Google Scholar 

  27. Petrow, S., Kasatiya, S. S., Pelletier, J., Ackermann, H.-W., and Péloquin, J. (1974) A phage typing scheme for Salmonella newport. Ann. Microbiol. 125A, 433–445.

    Google Scholar 

  28. Jayasheela, M., Singh, G., Sharma, N. C., and Saxena, S. N. (1987) A new scheme for phage typing Salmonella bareilly and characterization of typing phages. J. Appl. Bacteriol. 62, 429–432.

    CAS  PubMed  Google Scholar 

  29. Girard, R. and Chaby, R. (1981) Comparative studies on Salmonella johannesburg bacteriophages: virulence and interactions with the host cell lipopolysaccharide. Ann. Microbiol. (Paris) 132B, 197–214.

    CAS  Google Scholar 

  30. Joshi, A., Siddiqui, J. Z., Rao, G. R. K., and Chakravorty, M. (1982) MB78, a virulent bacteriophage of Salmonella typhimurium. J. Virol. 41, 1038–1043.

    CAS  PubMed  Google Scholar 

  31. Kumar, S., Sharma, N. C., and Singh, H. (1997) Isolation of Salmonella senftenberg bacteriophages. Indian J. Med. Res. 105, 47–52.

    CAS  PubMed  Google Scholar 

  32. Kwiatkowski, B. (1966) The structure of Vi-phage II. Acta Microbiol. Pol. 15, 23–26.

    CAS  PubMed  Google Scholar 

  33. Vieu, J. F. and Croissant, O. (1966) Lyophilisation du bactériophage Vi II de Salmonella typhi. Arch. Roum. Pathol. Exp. Microbiol. 25, 305–318.

    CAS  PubMed  Google Scholar 

  34. Meynell, E. W. (1961) A phage, φχ, which attacks motile bacteria. J. Gen. Microbiol. 25, 253–290.

    CAS  PubMed  Google Scholar 

  35. Schade, S. Z., Adler, J., and Ris, H. (1967) How bacteriophage χ attacks motile bacteria. J. Virol. 1, 599–609.

    CAS  PubMed  Google Scholar 

  36. Adamia, R. (1999) General mechanisms of phage-host bacterial cells’ genomes interactions. Ph.D. thesis, Academy of Sciences of Georgia, Tbilisi, 31 p. (abstract).

    Google Scholar 

  37. Adamia, R. S., Matitashvili, E. A., Kvachadze, L. I., et al. (1990) The virulent bacteriophage IRA of Salmonella typhimurium: cloning of phage genes which are proportionally lethal for the host cell. J. Basic Microbiol. 30, 707–716.

    Article  CAS  PubMed  Google Scholar 

  38. Casjens, S. R., Gilcrease, E. B., Winn-Stapley, D. A., et al. (2005) The generalized transducing Salmonella bacteriophage ES18: complete genome sequence and DNA packaging strategy. J. Bacteriol. 187, 1091–1104.

    Article  CAS  PubMed  Google Scholar 

  39. Yamamoto, N. and Anderson, T. F. (1961) Genomic masking and recombination between serologically unrelated phages P22 and P221. Virology 14, 430–439.

    Article  CAS  PubMed  Google Scholar 

  40. Young, B. G., Hartman, P. E., and Moudrianakis, E. N. (1966) Some phages released by P22-infected Salmonella. Virology 28, 249–264.

    Article  CAS  PubMed  Google Scholar 

  41. Vieu, J. F., Croissant, O., and Dauguet, C. (1965) Structure des bactériophages responsables des phénomènes de conversion chez les Salmonella. Ann. Inst. Pasteur 109, 160–166.

    CAS  Google Scholar 

  42. Anderson, T. F. (1960) On the fine structure of the temperate bacteriophages P1, P2 and P22, in Proceedings of the European Regional Conference on Electron Microscopy, Delft 1960, vol. 2 (Houwink, A. L. and Spit, B. J., eds.), De Nederlandse Vereniging voor Elektronenmicroscopie, Delft, pp. 1088–1011.

    Google Scholar 

  43. Bezdek, M. and Amati, P. (1967) Properties of P22 and a related Salmonella typhimurium phage. I. General features and host specificity. Virology 31, 272–278.

    Article  CAS  PubMed  Google Scholar 

  44. Kitamura, J. and Mise, K. (1970) A new generalized transducing phage in Salmonella. Jpn. J. Med. Sci. Biol. 23, 99–102.

    CAS  PubMed  Google Scholar 

  45. Grabnar, M. and Hartman, P. E. (1968) MG40 phage, a transducing phage related to P22. Virology 343, 521–530.

    Article  Google Scholar 

  46. Enomoto, M. and Ishiwa, H. (1972) A new transducing phage related to P22 of Salmonella typhimurium. J. Gen. Virol. 14, 157–164.

    Article  CAS  PubMed  Google Scholar 

  47. Svenson, S. B., Löngren, J., Carlin, N., and Lindberg, A. A. ((1979) Salmonella bacteriophage glycanases: endorhamnosidases of Salmonella typhimurium bacteriophages. J. Virol. 32, 583–592.

    CAS  PubMed  Google Scholar 

  48. Butler, E. T. and Chamberlin, M. J. (1982) Bacteriophage SP6-specific RNA polymerase. Isolation and characterization of the enzyme. J. Biol. Chem. 257, 5772–5778.

    CAS  PubMed  Google Scholar 

  49. Dobbins, A. T., George, M., Basham, D. A., et al. (2004) Complete genomic sequence of the virulent Salmonella bacteriophage SP6. J. Bacteriol. 186, 1933–1944.

    Article  CAS  PubMed  Google Scholar 

  50. Scholl, D., Kieleczawa, J., Kemp, P., et al. (2004) Genomic analysis of bacteriophages SP6 and K1-5, an estranged subgroup of the T7 supergroup. J. Mol. Biol. 335, 1151–1171.

    Article  CAS  PubMed  Google Scholar 

  51. Mmolawa, P. T., Willmore, R., Thomas, C. J., and Heuzenroeder, M. W. (2002) Temperate phages in Salmonella enterica serovar Typhimurium: implications for epidemiology. Int. J. Med. Microbiol. 291, 633–644.

    Article  PubMed  Google Scholar 

  52. Ackermann, H.-W., Petrow, S., and Kasatiya, S. S. (1974) Unusual bacteriophages in Salmonella newport. J. Virol. 13, 706–711.

    CAS  PubMed  Google Scholar 

  53. Bradley, D. E., Sirgel, F. A., Coetzee, J. N., and Hedges, R. W. (1982) Phages C-2 and J: IncC and IncJ plasmid-dependent phages, respectively. J. Gen. Microbiol. 128, 2485–2498.

    CAS  PubMed  Google Scholar 

  54. Coetzee, J. N., Bradley, D. E., and Hedges, R. W. (1982) Phages Iα and I2-2: IncI plasmid-dependent bacteriophages. J. Gen. Microbiol. 128, 2797–2804.

    CAS  PubMed  Google Scholar 

  55. Coetzee, J. N., Bradley, D. E., Hedges, R. W., et al. (1986) Bacteriophages Folac h, SR, SF: phages which adsorb to pili encoded by plasmids of the S-complex. J. Gen. Microbiol. 132, 2907–2917.

    CAS  PubMed  Google Scholar 

  56. Coetzee, J. N., Bradley, D. E., Hedges, R. W., Tweehuizen, M., and Du Toit, L. (1987) Phage tf-1: a filamentous bacteriophage specific for bacteria harbouring the IncT plasmid pIN25. J. Gen. Microbiol. 133, 953–960.

    CAS  PubMed  Google Scholar 

  57. Coetzee, J. N., Bradley, D. E., Du Toit, L., and Hedges, R. W. (1988) Bacteriophage X-2: a filamentous phage lysing IncX-plasmid-harbouring bacterial strains. J. Gen. Microbiol. 134, 2535–2541.

    CAS  PubMed  Google Scholar 

  58. Coetzee, J. N., Bradley, D. E., Hedges, R.W., Fleming, J., and Lecatsas, G. (1983) Bacteriophage M: an incompatibility group M plasmid-specific phage. J. Gen. Microbiol. 129, 2271–2276.

    CAS  PubMed  Google Scholar 

  59. Olsen, R. H. and Thomas, D. D. (1973) Characteristics and purification of PRR1, an RNA phage specific for the broad host range Pseudomonas R1822 drug resistant plasmid. J. Virol. 12, 1560–1567.

    CAS  PubMed  Google Scholar 

  60. Ilyashenko, B. N., Tikhonenko, A. S., Dityatkin, S. J., and Rudchenko, O. N. (1965) Biological properties of small enteric phages containing DNA. Mikrobiologiia 34, 814–819.

    Google Scholar 

  61. Bradley, D. E. (1961) Negative staining of bacteriophage φR at various pH values. Virology 15, 203–205.

    Article  CAS  PubMed  Google Scholar 

  62. Olsen, R. H., Siak, J.-S., and Gray, R. H. (1976) Characteristics of PRD1, a plasmid-dependent broad host-range DNA bacteriophage. J. Virol. 14, 689–699.

    Google Scholar 

  63. Wong, F. H. and Bryan, L. E. (1978) Characteristics of PR5, a lipid-containing plasmid-dependent phage. Can. J. Microbiol. 24, 875–882.

    Article  CAS  PubMed  Google Scholar 

  64. Kropinski, A. M., Kovalyova, I. V., Billington, S. J., et al. (2006) The genome of ɛ15, a serotype-converting, Group E1 Salmonella enterica-specific bacteriophage. J. Bacteriol. in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Ackermann, HW. (2007). Salmonella Phages Examined in the Electron Microscope. In: Schatten, H., Eisenstark, A. (eds) Salmonella. Methods in Molecular Biology, vol 394. Humana Press. https://doi.org/10.1007/978-1-59745-512-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-512-1_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-619-1

  • Online ISBN: 978-1-59745-512-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics