Advertisement

In Vivo Tomographic Imaging Studies of Neurodegeneration and Neuroprotection: A Review

  • Rikki N. Waterhouse
  • Jun Zhao
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 399)

Abstract

Noninvasive tomographic imaging methods including positron emission tomography (PET) and single photon emission computed tomography (SPECT) are extremely sensitive and are capable of measuring biochemical processes that occur at concentrations in the nanomolar range. Inherent to neurodegenerative processes is neuronal loss. Thus, PET or SPECT monitoring of biochemical processes altered by neuronal loss (changes in neurotransmitter turnover, alterations in receptor, transporter or enzyme concentrations) can provide unique information not attainable by other methods. Such imaging techniques can also be used to longtitudinally monitor the effects of neuroprotective treatments. This review highlights current imaging probes used to evaluate patients with specific neurodegenerative disorders (e.g., Alzheimer’s Disease, Parkinson’s Disease, Huntington’s Chorea), including those that image receptors of the dopaminergic, cholinergic and glutamatergic systems. Areas of future research focus are also defined. It is clear that monitoring the progression of neurodegenerative disorders and the impact of neuroprotective treatments are two different but related goals for which noninvasive imaging via PET and SPECT methods plays a powerful and unique role.

Key Words

Positron emission tomography single photon emission computed tomography neuroimaging dopamine receptor neurodegeneration neuroprotection Parkinson’s Disease Alzheimer’s Disease Huntington’s Chorea radiotracer cholinergic receptor 

References

  1. 1.
    Kessler, R. M. (2003) Imaging methods for evaluating brain function in man. Neurobiol Aging 24Suppl 1, S21–35.CrossRefPubMedGoogle Scholar
  2. 2.
    Slifstein, M. and Laruelle, M. (2001) Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers. Nucl Med Biol 28, 595–608.CrossRefPubMedGoogle Scholar
  3. 3.
    Lammertsma, A. (2001) PET/SPECT: functional imaging beyond flow Vision Res 41, 1277–81.CrossRefPubMedGoogle Scholar
  4. 4.
    Talbot, P. and Laruelle, M. (2002) The role of in vivo molecular imaging with PET and SPECT in the elucidation of psychiatric drug action and new drug development. Eur Neuropsychopharmacol 12, 503–11.CrossRefPubMedGoogle Scholar
  5. 5.
    Kegeles, L. and Mann, J. (1997) In vivo imaging of neurotransmitter systems using radiolabeled receptor ligands. Neuropsychopharmacology 17, 293–307.CrossRefPubMedGoogle Scholar
  6. 6.
    Halldin, C., Gulyas, B., Langer, O., and Farde, L. (2001) Brain radioligands-state of the art and new trends. Q J Nucl Med 45, 139–52.PubMedGoogle Scholar
  7. 7.
    Piccini, P. (2004) Neurodegenerative movement disorders: the contribution of functional imaging. Curr Opin Neurol 17, 459–66.CrossRefPubMedGoogle Scholar
  8. 8.
    Costa, D., Pilowsky, L., and Ell, P. (1999) Nuclear medicine in neurology and psychiatry. Lancet 354, 1107–11.CrossRefPubMedGoogle Scholar
  9. 9.
    Blake, P., Johnson, B., and VanMeter, J. W. (2003) Positron emission tomography (PET) and single photon emission computed tomography (SPECT): clinical applications. J Neuroophthalmol 23, 34–41.PubMedGoogle Scholar
  10. 10.
    Mandel, S., Grunblatt, E., Riederer, P., Gerlach, M., Levites, Y., and Youdim, M. B. (2003) Neuroprotective strategies in Parkinson’s disease: an update on progress. CNS Drugs 17, 729–62.CrossRefPubMedGoogle Scholar
  11. 11.
    Kostrzewa, R. M. and Segura-Aguilar, J. (2003) Novel mechanisms and approaches in the study of neurodegeneration and neuroprotection. Neurotox Res 5, 375–83.CrossRefPubMedGoogle Scholar
  12. 12.
    Youdim, M. B. and Buccafusco, J. J. (2005) CNS targets for multi-functional drugs in the treatment of Alzheimer’s and Parkinson’s diseases. J Neural Transm 112, 519–37.CrossRefPubMedGoogle Scholar
  13. 13.
    Riederer, P., Gille, G., Muller, T., Przuntek, H., Reichmann, H., Riess, O., Schwartz, A., Schwarz, J., and Vogt, T. (2002) Practical importance of neuroprotection in Parkinson’s disease. J Neurol 249, 53–6.CrossRefGoogle Scholar
  14. 14.
    Leenders, K. L. and Oertel, W. H. (2001) Parkinson’s disease: clinical signs and symptoms, neural mechanisms, positron emission tomography, and therapeutic interventions. Neural Plast 8, 99–110.CrossRefPubMedGoogle Scholar
  15. 15.
    Hauser, R. A. and Zesiewicz, T. A. (1999) Management of early Parkinson’s disease. Med Clin North Am 83, 393–414.CrossRefPubMedGoogle Scholar
  16. 16.
    Riederer, P., Sian, J., and Gerlach, M. (2000) Is there neuroprotection in Parkinson syndrome? J Neurol 247, 8–11.Google Scholar
  17. 17.
    Stocchi, F. and Olanow, C. W. (2003) Neuroprotection in Parkinson’s disease: clinical trials. Ann Neurol 53Suppl 3, S87–97.CrossRefPubMedGoogle Scholar
  18. 18.
    Brooks, D. J., Frey, K. A., Marek, K. L., Oakes, D., Paty, D., Prentice, R., Shults, C. W., and Stoessl, A. J. (2003) Assessment of neuroimaging techniques as biomarkers of the progression of Parkinson’s disease. Exp Neurol 184Suppl 1, S68–79.CrossRefPubMedGoogle Scholar
  19. 19.
    Morrish, P. K. (2003) How valid is dopamine transporter imaging as a surrogate marker in research trials in Parkinson’s disease? Mov Disord 18Suppl 7, S63–70.CrossRefPubMedGoogle Scholar
  20. 20.
    Brooks, D. J. (2000) Monitoring neuroprotection and restorative therapies in Parkinson’s diseasse with PET. J Neural Transm Suppl 60, 125–37.PubMedGoogle Scholar
  21. 21.
    Guilloteau, D. and Chalon, S. (2005) PET and SPECT exploration of central monoaminergic transporters for the development of new drugs and treatments in brain disorders. Curr Pharm Des 11, 3237–45.CrossRefPubMedGoogle Scholar
  22. 22.
    Brooks, D. J. (2003) Imaging end points for monitoring neuroprotection in Parkinson’s disease. Ann Neurol 53Suppl 3, S110–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Morrish, P. K., Rakshi, J. S., Bailey, D. L., Sawle, G. V., and Brooks, D. J. (1998) Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F]dopa PET. J Neurol Neurosurg Psychiatry 64, 314–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Hilker, R., Schweitzer, K., Coburger, S., Ghaemi, M., Weisenbach, S., Jacobs, A. H., Rudolf, J., Herholz, K., and Heiss, W. D. (2005) Nonlinear progression of Parkinson disease as determined by serial positron emission tomographic imaging of striatal fluorodopa F 18 activity. Arch Neurol 62, 378–82.CrossRefPubMedGoogle Scholar
  25. 25.
    Heiss, W. D. and Hilker, R. (2004) The sensitivity of 18-fluorodopa positron emission tomography and magnetic resonance imaging in Parkinson’s disease. Eur J Neurol 11, 5–12.CrossRefPubMedGoogle Scholar
  26. 26.
    Rakshi, J. S., Pavese, N., Uema, T., Ito, K., Morrish, P. K., Bailey, D. L., and Brooks, D. J. (2002) A comparison of the progression of early Parkinson’s disease in patients started on ropinirole or L-dopa: an 18F-dopa PET study. J Neural Transm 109, 1433–43.CrossRefPubMedGoogle Scholar
  27. 27.
    Bohnen, N. I. and Frey, K. A. (2003) The role of positron emission tomography imaging in movement disorders. Neuroimaging Clin N Am 13,791–803.CrossRefPubMedGoogle Scholar
  28. 28.
    Booij, J., Tissingh, G., Winogrodzka, A., and van Royen, E. A. (1999) Imaging of the dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism. Eur J Nucl Med 26, 171–82.CrossRefPubMedGoogle Scholar
  29. 29.
    Carpinelli, A., Matarrese, M., Moresco, R., Simonelli, P., Todde, S., Magni, F., Galli, K. M., and Fazio, F. (2001) Radiosynthesis of [123I]betaCIT, a selective ligand for the study of the dopaminergic and serotoninergic systems in human brain. Appl Radiat Isot 54, 93–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Staley, J., Krishnan-Sarin, S., Zoghbi, S., Tamagnan, G., Fujita, M., Seibyl, J., Maciejewski, P., O’Malley, S., and Innis, R. (2001) Sex differences in [123I]beta-CIT SPECT measures of dopamine and serotonin transporter availability in healthy smokers and nonsmokers. Synapse 41, 275–84.CrossRefPubMedGoogle Scholar
  31. 31.
    Wenning, G., Donnemiller, E., Granata, R., Riccabona, G., and Poewe, W. (1998) 123I-beta-CIT and 123I-IBZM-SPECT scanning in levodopa-naive Parkinson’s disease. Mov Disord 13, 438–45.CrossRefPubMedGoogle Scholar
  32. 32.
    Berding, G., Brucke, T., Odin, P., Brooks, D. J., Kolbe, H., Gielow, P., Harke, H., Knoop, B. O., Dengler, R., and Knapp, W. H. (2003) [123I]beta-CIT SPECT imaging of dopamine and serotonin transporters in Parkinson’s disease and multiple system atrophy. Nucl Med 42, 31–8.Google Scholar
  33. 33.
    Berger, H., Cools, A., Horstink, M., Oyen, W., Verhoeven, E., and van der Werf, S. P. (2004) Striatal dopamine and learning strategy-an (123)I-FP-CIT SPECT study. Neuropsychologia 42, 1071–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Booij, J., Tissingh, G., Boer, G., Speelman, J., Stoof, J., Janssen, A., Wolters, E., and van Royen, E. A. (1997) [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 62, 133–40.CrossRefPubMedGoogle Scholar
  35. 35.
    Lavalaye, J., Linszen, D., Booij, J., Dingemans, P., Reneman, L., Habraken, J., Gersons, B., and van Royen, E. A. (2001) Dopamine transporter density in young patients with schizophrenia assessed with [123]FP-CIT SPECT. Schizophr Res 47, 59–67.CrossRefPubMedGoogle Scholar
  36. 36.
    Booij, J., Speelman, J. D., Horstink, M. W., and Wolters, E. C. (2001) The clinical benefit of imaging striatal dopamine transporters with [123I]FP-CIT SPET in differentiating patients with presynaptic parkinsonism from those with other forms of parkinsonism. Eur J Nucl Med 28, 266–72.CrossRefPubMedGoogle Scholar
  37. 37.
    Winogrodzka, A., Bergmans, P., Booij, J., van Royen, E. A., Janssen, A. G., and Wolters, E. C. (2003) [123I]FP-CIT SPECT is a useful method to monitor the rate of dopaminergic degeneration in early-stage Parkinson’s disease. J Neural Transm 108, 1011–9.CrossRefGoogle Scholar
  38. 38.
    Parkinson Study Group. (2002) Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA 287, 1653–61.CrossRefGoogle Scholar
  39. 39.
    Hall, H., Halldin, C., Guilloteau, D., Chalon, S., Emond, P., Besnard, J., Farde, L., and Sedvall, G. (1999) Visualization of the dopamine transporter in the human brain postmortem with the new selective ligand [125I]PE2I. Neuroimage 9, 108–16.CrossRefPubMedGoogle Scholar
  40. 40.
    Kuikka, J., Baulieu, J., Hiltunen, J., Halldin, C., Bergstrom, K., Farde, L., Emond, P., Chalon, S., Yu, M., Nikula, T., Laitinen, T., Karhu, J., Tupala, E., Hallikainen, T., Kolehmainen, V., Mauclaire, L., Maziere, B., Tiihonen, J., and Guilloteau, D. (1998) Pharmacokinetics and dosimetry of iodine-123 labelled PE2I in humans, a radioligand for dopamine transporter imaging. Eur J Nucl Med 25, 531–4.CrossRefPubMedGoogle Scholar
  41. 41.
    Choi, S., Kung, M., Plossl, K., Meegalla, S., and Kung, H. (1999) An improved kit formulation of a dopamine transporter imaging agent: [Tc-99m]TRODAT-1. Nucl Med Biol 26, 461–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Kung, M., Stevenson, D., Plossl, K., Meegalla, S., Beckwith, A., Essman, W., Mu, M., Lucki, I., and Kung, H. (1997) [99mTc]TRODAT-1: a novel technetium-99m complex as a dopamine transporter imaging agent. Eur J Nucl Med 24, 372–80.PubMedGoogle Scholar
  43. 43.
    Van Laere, K., De Ceuninck. L., Dom, R., Van den Eynder, J., Vanbilloen, H., Cleynhens, J., Dupont, P., Bormans, G., Verbruggen, A., and Mortelmans, L. (2004) Dopamine transporter SPECT using fast kinetic ligands: 123I-FPbeta-CIT versus 99mTc-TRODAT-1. Eur J Nucl Med Mol Imaging 31, 1119–27.CrossRefPubMedGoogle Scholar
  44. 44.
    Meegalla, S., Plossl, K., Kung, M., Stevenson, D., Mu, M., Kushner, S., Liable-Sands, L., Rheingold, A., and Kung, H. (1998) Specificity of diastereomers of [99mTc]TRODAT-1 as dopamine transporter imaging agents. J Med Chem 41, 428–36.CrossRefPubMedGoogle Scholar
  45. 45.
    Pan, T., Xie, W., Jankovic, J., and Le, W. (2005) Genetic analysis of parkin coregulated gene (PACRG) in patients with early-onset parkinsonism. Neurosci Lett 377, 106–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Stephenson, C., Bigliani, V., Jones, H., Mulligan, R., Acton, P., Visvikis, D., Ell, P., Kerwin, R., and Pilowsky, L. (2000) Striatal and extra-striatal D(2)/D(3) dopamine receptor occupancy by quetiapine in vivo. [(123)I]-epidepride single photon emission tomography (SPET) study. Br J Psychiatry 177, 408–15.CrossRefPubMedGoogle Scholar
  47. 47.
    Black, K. J., Hershey, T., Hartlein, J. M., Carl, J. L., and Perlmutter, J. S. (2005) Levodopa challenge neuroimaging of levodopa-related mood fluctuations in Parkinson’s disease. Neuropsychopharmacology 30, 590–601.CrossRefPubMedGoogle Scholar
  48. 48.
    Prunier, C., Tranquart, F., Cottier, J., Giraudeau, B., Chalon, S., Guilloteau, D., De Toffol, B., Chossat, F., Autret, A., Besnard, J., and Baulieu, J. (2001) Quantitative analysis of striatal dopamine D2 receptors with 123 I-iodolisuride SPECT in degenerative extrapyramidal diseases. Nucl Med Commun 22, 1207–14.CrossRefPubMedGoogle Scholar
  49. 49.
    Kornhuber, J., Brucke, T., Angelberger, P., Asenbaum, S., and Podreka, I. (1995) SPECT imaging of dopamine receptors with [123I]epidepride: characterization of uptake in the human brain. J Neural Transm Gen Sect 101, 95–103.CrossRefPubMedGoogle Scholar
  50. 50.
    Pirker, W., Asenbaum, S., Wenger, S., Kornhuber, J., Angelberger, P., Deecke, L., Podreka, I., and Brucke, T. (1997) Iodine-123-epidepride-SPECT: studies in Parkinson’s disease, multiple system atrophy and Huntington’s disease. J Nucl Med 38, 1711–7.PubMedGoogle Scholar
  51. 51.
    Cordes, M., Hierholzer, J., Schelosky, L., Schrag, A., Richter, W., Eichstadt, H., Schulze, P., Poewe, W., and Felix, R. (1996) Iodine-123-iodo-lisuride SPECT in Parkinson’s disease. J Nucl Med 37, 22–5.PubMedGoogle Scholar
  52. 52.
    Votaw, J., Ansari, M., Mason, N., Schmidt, D., de Paulis, T., Holburn, G., Clanton, J., Votaw, D., Manning, R., and Kessler, R. (1995) Dosimetry of iodine-123-epidepride: a dopamine D2 receptor ligand. J Nucl Med 36, 1316–21.PubMedGoogle Scholar
  53. 53.
    Chalon, S., Emond, P., Bodard, S., Vilar, M., Thiercelin, C., Besnard, J., and Guilloteau, D. (1999) Time course of changes in striatal dopamine transporters and D2 receptors with specific iodinated markers in a rat model of Parkinson’s disease. Synapse 31, 134–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Pizzolato, G., Chierichetti, F., Rossato, A., Cagnin, A., Fabbri, M., Dam, M., Ferlin, G., and Battistin, L. (1995) Alterations of striatal dopamine D2 receptors contribute to deteriorated response to L-dopa in Parkinson’s disease: a [123I]-IBZM SPET study. J Neural Transm Suppl 45, 113–22.PubMedGoogle Scholar
  55. 55.
    Knudsen, G. M., Karlsborg, M., Thomsen, G., Krabbe, K., Regeur, L., Nygaard, T., Videbaek, C., and Werdelin, L. (2004) Imaging of dopamine transporters and D2 receptors in patients with Parkinson’s disease and multiple system atrophy. Eur J Nucl Med Mol Imaging 31, 1631–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Laruelle, M. and Huang, Y. (2001) Vulnerability of positron emission tomography radiotracers to endogenous competition. New insights. Q J Nucl Med 45, 124–38.PubMedGoogle Scholar
  57. 57.
    Frey, K. A., Koeppe, R. A., and Kilbourn, M. R. (2001) Imaging the vesicular monoamine transporter. Adv Neurol 86, 237–47.PubMedGoogle Scholar
  58. 58.
    Frey, K. A., Koeppe, R. A., Kilbourn, M. R., Vander Borght, T. M., Albin, R. L., Gilman, S., and Kuhl, D. E. (1996) Presynaptic monoaminergic vesicles in Parkinson’s disease and normal aging. Ann Neurol 40, 873–84.CrossRefPubMedGoogle Scholar
  59. 59.
    Bohnen, N. I., Koeppe, R. A., Meyer, P., Ficaro, E., Wernette, K., Kilbourn, M. R., Kuhl, D. E., Frey, K. A., and Albin, R. L. (2000) Decreased striatal monoaminergic terminals in Huntington disease. Neurology 54, 1753–9.PubMedGoogle Scholar
  60. 60.
    Miller, G. W., Erickson, J. D., Perez, J. T., Penland, S. N., Mash, D. C., Rye, D. B., and Levey, A. I. (1999) Immunochemical analysis of vesicular monoamine transporter (VMAT2) protein in Parkinson’s disease. Exp Neurol 156,138–48.CrossRefPubMedGoogle Scholar
  61. 61.
    Suzuki, M., Desmond, T. J., Albin, R. L., and Frey, K. A. (2002) Striatal monoaminergic terminals in Lewy body and Alzheimer’s dementias. Ann Neurol 51, 767–71.CrossRefPubMedGoogle Scholar
  62. 62.
    Suzuki, M., Desmond, T. J., Albin, R. L., and Frey, K. A. (2001) Vesicular neurotransmitter transporters in Huntington’s disease: initial observations and comparison with traditional synaptic markers. Synapse 41, 329–36.CrossRefPubMedGoogle Scholar
  63. 63.
    Lehericy, S., Brandel, J. P., Hirsch, E. C., Anglade, P., Villares, J., Scherman, D., Duyckaerts, C., Javoy-Agid, F., and Agid, Y. (1994) Monoamine vesicular uptake sites in patients with Parkinson’s disease and Alzheimer’s disease, as measured by tritiated dihydrotetrabenazine autoradiography. Brain Res 659, 1–9.CrossRefPubMedGoogle Scholar
  64. 64.
    Aarsland, D., Sharp, S., and Ballard, C. (2005) Psychiatric and behavioral symptoms in Alzheimer’s disease and other dementias: etiology and management. Curr Neurol Neurosci Rep 5, 345–54.CrossRefPubMedGoogle Scholar
  65. 65.
    Clader, J. W. and Wang, Y. (2005) Muscarinic receptor agonists and antagonists in the treatment of Alzheimer’s disease. Curr Pharm Des 11, 3353–61.CrossRefPubMedGoogle Scholar
  66. 66.
    Riepe, M. W. (2005) Cholinergic treatment: what are the early neuropathological targets? Eur J Neurol 3, 3–9.CrossRefGoogle Scholar
  67. 67.
    Longo, F. M. and Massa, S. M. (2004) Neuroprotective strategies in Alzheimer’s disease. NeuroRx 1, 117–27.CrossRefPubMedGoogle Scholar
  68. 68.
    Yan, Z. and Feng, J. (2004) Alzheimer’s disease: interactions between cholinergic functions and beta-amyloid. Curr Alzheimer Res 1, 241–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Bergstrom, K., Halldin, C., Savonen, A., Okubo, Y., Hiltunen, J., Nobuhara, K., Swahn, C., Karlsson, P., McPherson, D., Knapp, F., Larsson, S., Schnell, P., and Farde, L. (1999) Iodine-123 labelled Z-(R,R)-IQNP: a potential radioligand for visualization of M(1) and M(2) muscarinic acetylcholine receptors in Alzheimer’s disease. Eur J Nucl Med 26, 1482–5.CrossRefPubMedGoogle Scholar
  70. 70.
    Knapp, F., McPherson, D., Luo, H., and Zeeburg, B. (1997) Radiolabeled ligands for imaging the muscarinic-cholinergic receptors of the heart and brain. Anticancer Res 17, 1559–72.PubMedGoogle Scholar
  71. 71.
    Norbury, R., Travis, M., Erlandsson, K., Waddington, W., Owens, J., Pimlott, S., Ell, P., and Murphy, D. (2005) In vivo imaging of muscarinic receptors in the aging female brain with (R,R)[123I]-I-QNB and single photon emission tomography. Exp Gerontol 40, 137–45.CrossRefPubMedGoogle Scholar
  72. 72.
    Sunderland, T., Esposito, G., Molchan, S. E., Coppola, R., Jones, D. W., Gorey, J., Little, J. T., Bahro, M., and Weinberger, D. R. (1995) Differential cholinergic regulation in Alzheimer’s patients compared to controls following chronic blockade with scopolamine: a SPECT study. Psychopharmacology 121, 231–41.CrossRefPubMedGoogle Scholar
  73. 73.
    Kemp, P. M., Holmes, C., Hoffmann, S., Wilkinson, S., Zivanovic, M., Thom, J., Bolt, L., Fleming, J., and Wilkinson, D. G. (2003) A randomised placebo controlled study to assess the effects of cholinergic treatment on muscarinic receptors in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 74, 1567–70.CrossRefPubMedGoogle Scholar
  74. 74.
    Nordberg, A. (2001) Nicotinic receptor abnormalities of Alzheimer’s disease: therapeutic implications. Biol Psychiatry 49, 200–10.CrossRefPubMedGoogle Scholar
  75. 75.
    Saji, H., Ogawa, M., Ueda, M., Iida, Y., Magata, Y., Tominaga, A., Kawashima, H., Kitamura, Y., Nakagawa, M., Kiyono, Y., and Mukai, T. (2002) Evaluation of radioiodinated 5-iodo-3-(2(S)-azetidinylmethoxy)pyridine as a ligand for SPECT investigations of brain nicotinic acetylcholine receptors. Ann Nucl Med 16,189–200.CrossRefPubMedGoogle Scholar
  76. 76.
    Vaupel, D., Mukhin, A., Kimes, A., Horti, A., Koren, A., and London, E. (1998) In vivo studies with [125I]5-I-A-85380, a nicotinic acetylcholine receptor radioligand. Neuroreport 9, 2311–7.CrossRefPubMedGoogle Scholar
  77. 77.
    Chefer, S., Horti, A., Lee, K., Koren, A., Jones, D., Gorey, J., Links, J., Mukhin, A., Weinberger, D., and London, E. (1998) In vivo imaging of brain nicotinic acetylcholine receptors with 5-[123I]iodo-A-85380 using single photon emission computed tomography. Life Sci 63, PL355–60.CrossRefPubMedGoogle Scholar
  78. 78.
    Ueda, M., Iida, Y., Mukai, T., Mamede, M., Ishizu, K., Ogawa, M., Magata, Y., Konishi, J., and Saji, H. (2004) 5-[123I]Iodo-A-85380: assessment of pharmacological safety, radiation dosimetry and SPECT imaging of brain nicotinic receptors in healthy human subjects. Ann Nucl Med 18, 337–44.CrossRefPubMedGoogle Scholar
  79. 79.
    Staley, J., van Dyck, C., Weinzimmer, D., Brenner, E., Baldwin, R., Tamagnan, G., Riccardi, P., Mitsis, E., and Seibyl, J. (2005) 123I-5-IA-85380 SPECT measurement of nicotinic acetylcholine receptors in human brain by the constant infusion paradigm: feasibility and reproducibility. J Nucl Med 46, 1466–72PubMedGoogle Scholar
  80. 80.
    Volkow, N. D., Ding, Y. S., Fowler, J. S., and Gatley, S. J. (2001) Imaging brain cholinergic activity with positron emission tomography: its role in the evaluation of cholinergic treatments in Alzheimer’s dementia. Biol Psychiatry 49, 211–20.CrossRefPubMedGoogle Scholar
  81. 81.
    Abreo, M., Lin, N.-H., Garvey, D., Gunn, D., Hettinger, A.-M., Wasicak, J., Pavlik, P., Martin, Y., Donnelly-Roberts, D., Anderson, D., Sullivan, J., Williams, M., Arneric, S., and Holladay, M. (1996) Novel 3-pyridyl ethers with subnanomolar affinity for central neuronal nicotinic acetylcholine receptors. J Med Chem 38, 817–25.CrossRefGoogle Scholar
  82. 82.
    Schmaljohann, J., Gundisch, D., Minnerop, M., Joe, A., Bucerius, J., Dittmar, C., Jessen, F., Guhlke, S., and Wullner, U. (2005) A simple and fast method for the preparation of n.c.a. 2-[18F]F-A85380 for human use. Appl Radiat Isot 63, 433–5.CrossRefPubMedGoogle Scholar
  83. 83.
    Nordberg, A., Lundqvist, H., Hartvig, P., Andersson, J., Johansson, M., Hellstrom-Lindahi, E., and Langstrom, B. (1997) Imaging of nicotinic and muscarinic receptors in Alzheimer’s disease: effect of tacrine treatment. Dement Geriatr Cogn Disord 8, 78–84.CrossRefPubMedGoogle Scholar
  84. 84.
    Nordberg, A., Lundqvist, H., Hartvig, P., Lilja, A., and Langstrom, B. (1995) Kinetic analysis of regional (S)(-)11C-nicotine binding in normal and Alzheimer brains—in vivo assessment using positron emission tomography. Alzheimer Dis Assoc Disord 9, 21–7.CrossRefPubMedGoogle Scholar
  85. 85.
    Nordberg, A., Lilja, A., Lundqvist, H., Hartvig, P., Amberla, K., Viitanen, M., Warpman, U., Johansson, M., Hellstrom-Lindahl, E., Bjurling, P. et al. (1992) Tacrine restores cholinergic nicotinic receptors and glucose metabolism in Alzheimer patients as visualized by positron emission tomography. Neurobiol Aging 13, 747–58.CrossRefPubMedGoogle Scholar
  86. 86.
    Molinuevo, J. L., Llado, A., and Rami, L. (2005) Memantine: targeting glutamate excitotoxicity in Alzheimer’s disease and other dementias. Am J Alzheimers Dis Other Demen 20, 77–85.CrossRefPubMedGoogle Scholar
  87. 87.
    Waxman, E. A. and Lynch, D. R. (2005) N-Methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. Neuroscientist 11, 37–49.CrossRefPubMedGoogle Scholar
  88. 88.
    Lipton, S. A. (2004) Paradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and other neurologic disorders. J Alzheimers Dis 6 S61-74.Google Scholar
  89. 89.
    Barnes, G. N. and Slevin, J. T. (2003) Ionotropic glutamate receptor biology: effect on synaptic connectivity and function in neurological disease. Curr Med Chem 10, 2059–72.CrossRefPubMedGoogle Scholar
  90. 90.
    Lipton, S. A. (2005) The molecular basis of memantine action in Alzheimer’s disease and other neurologic disorders: low-affinity, uncompetitive antagonism. Curr Alzheimer Res 2, 155–65.CrossRefPubMedGoogle Scholar
  91. 91.
    Wang, C. X. and Shuaib, A. (2005) NMDA/NR2B selective antagonists in the treatment of ischemic brain injury. Curr Drug Targets CNS Neurol Disord 4, 143–51.CrossRefPubMedGoogle Scholar
  92. 92.
    Arundine, M. and Tymianski, M. (2004) Molecular mechanisms of glutamatedependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61, 657–68.CrossRefPubMedGoogle Scholar
  93. 93.
    Bressan, R., Erlandsson, K., Mulligan, R., Gunn, R., Cunningham, V., Owens, J., Cullum, I., Ell, P., and Pilowsky, L. (2004) A bolus/infusion paradigm for the novel NMDA receptor SPET tracer [123I]CNS 1261. Nucl Med Biol 31, 155–64.CrossRefPubMedGoogle Scholar
  94. 94.
    Owens, J., Tebbutt, A., McGregor, A., Kodama, K., Magar, S., Perlman, M., Robins, D., Durant, G., and McCulloch, J. (2000) Synthesis and binding characteristics of N-(1-naphthyl)-N′-(3-[(125)I]-iodophenyl)-N′-methylguanidine ([(125)I]-xxxCNS 1261): a potential SPECT agent for imaging NMDA receptor activation. Nucl Med Biol 27, 557–64.CrossRefPubMedGoogle Scholar
  95. 95.
    Waterhouse, R. N. (2003) Imaging the PCP site of the NMDA ion channel. Nucl Med Biol 30, 869–78.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Rikki N. Waterhouse
    • 1
  • Jun Zhao
    • 1
  1. 1.Neurobiology and Imaging Program, Department of Biological PsychiatryNew York State Psychiatric InstituteNew York

Personalised recommendations