Characterization of mRNA Expression in Single Neurons

  • David M. Lin
  • Brandon Loveall
  • John Ewer
  • David L. Deitcher
  • Nikolaus J. Sucher
Part of the Methods in Molecular Biology book series (MIMB, volume 399)


How neurons differ from each other is largely determined by their specific repertoire of mRNAs. The genes expressed by a given neuron reflect its developmental history, its interaction with other cells, and its synaptic activity. Since the introduction of reverse transcription polymerase chain reaction (RT-PCR), it has been possible to identify specific mRNAs present in small samples of total RNA. But isolating RNA from only those cells of interest, and not others, represents a significant challenge. Several approaches can be used to isolate RNA from selected neurons. Following whole-cell patch-clamp recording, mRNA can be harvested from living cells by aspirating the cytoplasm into the patch-clamp pipette. Transcripts expressed in the recorded neuron can then be amplified by RT-PCR. Another way of isolating identified neurons is to use cell-specific promoters to drive the expression of a marker gene such as green fluorescent protein (GFP). RNA can then be isolated from GFP-positive cells. In a tissue context, laser microdissection can also be used to excise the cells of interest directly into an RNA isolation solution. The above methods of RNA isolation can also be combined with RNA amplification and microarray technology to identify specific transcripts that are unique to the cell type being studied. Here we provide detailed protocols for harvesting RNA from single cells, methods for RNA purification, and PCR amplification.

Key Words

RT-PCR microarray GFP laser microdissection RNA amplification patchclamp 


  1. 1.
    Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., and Erlich, H. (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. 1986. Cold Spring Harb Symp Quant Biol 51 (Part 1): 263–273.PubMedGoogle Scholar
  2. 2.
    Mullis, K. B. (1990) The unusual origin of the polymerase chain reaction. Sci Am 262, 56–61, 64–65.CrossRefPubMedGoogle Scholar
  3. 3.
    Li, H. H., Gyllensten, U. B., Cui, X. F., Saiki, R. K., Erlich, H. A., and Arnheim, N. (1988) Amplification and analysis of DNA sequences in single human sperm and diploid cells. Nature 335, 414–417.CrossRefPubMedGoogle Scholar
  4. 4.
    Hahn, S., Zhong, X. Y., Troeger, C., Burgemeister, R., Gloning, K., and Holzgreve, W. (2000) Current applications of single-cell PCR. Cell Mol Life Sci 57, 96–105.CrossRefPubMedGoogle Scholar
  5. 5.
    Bustin, S. A. (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25, 169–193.CrossRefPubMedGoogle Scholar
  6. 6.
    Freeman, W. M., Walker, S. J., and Vrana, K. E. (1999) Quantitative RT-PCR: pitfalls and potential. Biotechniques 26, 112–122, 124–125.PubMedGoogle Scholar
  7. 7.
    Wilhelm, J., and Pingoud, A. (2003) Real-time polymerase chain reaction. Chembiochem 4, 1120–1128.CrossRefPubMedGoogle Scholar
  8. 8.
    Durand, G. M., Marandi, N., Herberger, S. D., Blum, R., and Konnerth, A. (2005) Quantitative single-cell RT-PCR and Ca2+ imaging in brain slices. Pflugers Arch 451, 716–726.CrossRefPubMedGoogle Scholar
  9. 9.
    Hillman, K. L., Knudson, C. A., Carr, P. A., Doze, V. A., and Porter, J. E. (2005) Adrenergic receptor characterization of CA1 hippocampal neurons using real time single cell RT-PCR. Brain Res Mol Brain Res 139, 267–276.CrossRefPubMedGoogle Scholar
  10. 10.
    Sucher, N. J., and Deitcher, D. L. (1995) PCR and patch-clamp analysis of single neurons. Neuron 14, 1095–1100.CrossRefPubMedGoogle Scholar
  11. 11.
    Sucher, N. J., Deitcher, D. L., Baro, D. J., Warrick, R. M., and Guenther, E. (2000) Genes and channels: patch/voltage-clamp analysis and single-cell RT-PCR. Cell Tissue Res 302, 295–307.CrossRefPubMedGoogle Scholar
  12. 12.
    Husain, Q. M. and Ewer, J. (2004) Use of targetable gfp-tagged neuropeptide for visualizing neuropeptide release following execution of a behavior. J Neurobiol 59, 181–191.CrossRefPubMedGoogle Scholar
  13. 13.
    Shakiryanova, D., Tully, A., Hewes, R. S., Deitcher, D. L., and Levitan, E. S. (2005) Activity-dependent liberation of synaptic neuropeptide vesicles. Nat Neurosci 8, 173–178.CrossRefPubMedGoogle Scholar
  14. 14.
    Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.CrossRefPubMedGoogle Scholar
  15. 15.
    Fodor, S. P., Rava, R. P., Huang, X. C., Pease, A. C., Holmes, C. P., and Adams, C. L. (1993) Multiplexed biochemical assays with biological chips. Nature 364, 555–556.CrossRefPubMedGoogle Scholar
  16. 16.
    Dougherty, J. D. and Geschwind, D. H. (2005) Progress in realizing the promise of microarrays in systems neurobiology. Neuron 45, 183–185.CrossRefPubMedGoogle Scholar
  17. 17.
    Churchill, G. A. (2002) Fundamentals of experimental design for cDNA microarrays. Nat Genet 32 Suppl, 490–495.CrossRefPubMedGoogle Scholar
  18. 18.
    Lockhart, D. J., Dong, H., Byrne, M. C., Follettie, M. T., Gallo, M. V., Chee, M. S., Mittmann, M., Wang, C., Kobayashi, M., Horton, H., and Brown, E. L. (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14, 1675–1680.CrossRefPubMedGoogle Scholar
  19. 19.
    Hughes, T. R., Mao, M., Jones, A. R., Burchard, J., Marton, M. J., Shannon, K. W., Lefkowitz, S. M., Ziman, M., Schelter, J. M., Meyer, M. R., Kobayashi, S., Davis, C., Dai, H., He, Y. D., Stephaniants, S. B., Cavet, G., Walker, W. L., West, A., Coffey, E., Shoemaker, D. D., Stoughton, R., Blanchard, A. P., Friend, S. H., and Linsley, P. S. (2001) Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 19, 342–347.CrossRefPubMedGoogle Scholar
  20. 20.
    Chudin, E., Walker, R., Kosaka, A., Wu, S. X., Rabert, D., Chang, T. K., and Kreder, D. E. (2002) Assessment of the relationship between signal intensities and transcript concentration for Affymetrix GeneChip arrays. Genome Biol 3(1):RESEARCH0005. Epub 2001 Dec 14, Scholar
  21. 21.
    Iscove, N. N., Barbara, M., Gu, M., Gibson, M., Modi, C., and Winegarden, N. (2002) Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA. Nat Biotechnol 20, 940–943.CrossRefPubMedGoogle Scholar
  22. 22.
    Velculescu, V. E., Madden, S. L., Zhang, L., Lash, A. E., Yu, J., Rago, C., Lal, A., Wang, C. J., Beaudry, G. A., Ciriello, K. M., Cook, B. P., Dufault, M. R., Ferguson, A. T., Gao, Y., He, T. C., Hermeking, H., Hiraldo, S. K., Hwang, P. M., Lopez, M. A., Luderer, H. F., Mathews, B., Petroziello, J. M., Polyak, K., Zawel, L., Kinzler, K. W., et al. (1999) Analysis of human transcriptomes. Nat Genet 23, 387–388.CrossRefPubMedGoogle Scholar
  23. 23.
    Mahadevappa, M. and Warrington, J. A. (1999) A high-density probe array sample preparation method using 10-to 100-fold fewer cells. Nat Biotechnol 17, 1134–1136.CrossRefPubMedGoogle Scholar
  24. 24.
    DeRisi, J. L., Iyer, V. R., and Brown, P. O. (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686.CrossRefPubMedGoogle Scholar
  25. 25.
    Ludecke, H. J., Senger, G., Claussen, U., and Horsthemke, B. (1989) Cloning defined regions of the human genome by microdissection of banded chromosomes and enzymatic amplification. Nature 338, 348–350.CrossRefPubMedGoogle Scholar
  26. 26.
    Dixon, A. K., Richardson, P. J., Pinnock, R. D., and Lee, K. (2000) Geneexpression analysis at the single-cell level. Trends Pharmacol Sci 21, 65–70.CrossRefPubMedGoogle Scholar
  27. 27.
    Eberwine, J., Kacharmina, J. E., Andrews, C., Miyashiro, K., McIntosh, T., Becker, K., Barrett, T., Hinkle, D., Dent, G., and Marciano, P. (2001) mRNA expression analysis of tissue sections and single cells. J Neurosci 21, 8310–8314.PubMedGoogle Scholar
  28. 28.
    Eberwine, J., Yeh, H., Miyashiro, K., Cao, Y., Nair, S., Finnell, R., Zettel, M., and Coleman, P. (1992) Analysis of gene expression in single live neurons. Proc Natl Acad Sci USA 89, 3010–3014.CrossRefPubMedGoogle Scholar
  29. 29.
    Freeman, T. C., Lee, K., and Richardson, P. J. (1999) Analysis of gene expression in single cells. Curr Opin Biotechnol 10, 579–582.CrossRefPubMedGoogle Scholar
  30. 30.
    Ginsberg, S. D. and Che, S. (2004) Combined histochemical staining, RNA amplification, regional, and single cell cDNA analysis within the hippocampus. Lab Invest 84, 952–962.CrossRefPubMedGoogle Scholar
  31. 31.
    Hahn, S., Zhong, X. Y., and Holzgreve, W. (2002) Single cell PCR in laser capture microscopy. Methods Enzymol 356, 295–301.CrossRefPubMedGoogle Scholar
  32. 32.
    Hinkle, D., Glanzer, J., Sarabi, A., Pajunen, T., Zielinski, J., Belt, B., Miyashiro, K., McIntosh, T., and Eberwine, J. (2004) Single neurons as experimental systems in molecular biology. Prog Neurobiol 72, 129–142.CrossRefPubMedGoogle Scholar
  33. 33.
    Kacharmina, J. E., Crino, P. B., and Eberwine, J. (1999) Preparation of cDNA from single cells and subcellular regions. Methods Enzymol 303, 3–18.CrossRefPubMedGoogle Scholar
  34. 34.
    Kelz, M. B., Dent, G. W., Therianos, S., Marciano, P. G., McIntosh, T. K., Coleman, P. D., and Eberwine, J. H. (2002) Single-cell antisense RNA amplification and microarray analysis as a tool for studying neurological degeneration and restoration. Sci Aging Knowledge Environ 2002, re1.Google Scholar
  35. 35.
    Lin, D. M., Yang, Y. H., Scolnick, J. A., Brunet, L. J., Marsh, H., Peng, V., Okazaki, Y., Hayashizaki, Y., Speed, T. P., and Ngai, J. (2004) Spatial patterns of gene expression in the olfactory bulb. Proc Natl Acad Sci USA 101, 12718–12723.CrossRefPubMedGoogle Scholar
  36. 36.
    Monyer, H. and Lambolez, B. (1995) Molecular biology and physiology at the single-cell level. Curr Opin Neurobiol 5, 382–387.CrossRefPubMedGoogle Scholar
  37. 37.
    Van Gelder, R. N., von Zastrow, M. E., Yool, A., Dement, W. C., Barchas, J. D., and Eberwine, J. H. (1990) Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci USA 87, 1663–1667.CrossRefPubMedGoogle Scholar
  38. 38.
    Young, P. and Feng, G. (2004) Labeling neurons in vivo for morphological and functional studies. Curr Opin Neurobiol 14, 642.CrossRefPubMedGoogle Scholar
  39. 39.
    Park, Y., Filippov, V., Gill, S. S., and Adams, M. E. (2002) Deletion of the ecdysis-triggering hormone gene leads to lethal ecdysis deficiency. Development 129, 493–503.PubMedGoogle Scholar
  40. 40.
    Zitnan, D., Zitnanova, I., Spalovska, I., Takac, P., Park, Y., and Adams, M. E. (2003) Conservation of ecdysis-triggering hormone signalling in insects. J Exp Biol 206, 1275–1289.CrossRefPubMedGoogle Scholar
  41. 41.
    Rao, S., Lang, C., Levitan, E. S., and Deitcher, D. L. (2001) Visualization of neuropeptide expression, transport, and exocytosis in Drosophila melanogaster. J Neurobiol 49, 159–172.CrossRefPubMedGoogle Scholar
  42. 42.
    O’Brien, M. A. and Taghert, P. H. (1998) A peritracheal neuropeptide system in insects: release of myomodulin-like peptides at ecdysis. J Exp Biol 201, 193–209.PubMedGoogle Scholar
  43. 43.
    Dieffenbach, C. and Dveksler, G. (2003) PCR Primer: A Laboratory Manual. 2 ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  44. 44.
    Rozen, S. and Skaletsky, H. (2000) Primer3 on the WWW for general users and for biologist programmers, in Bioinformatics Methods and Protocols: Methods in Molecular Biology (Krawetz, S. and Misener, S., eds.), Humana Press, Totowa, NJ, pp. 365–386.Google Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • David M. Lin
    • 1
  • Brandon Loveall
    • 2
  • John Ewer
    • 2
  • David L. Deitcher
    • 3
  • Nikolaus J. Sucher
    • 4
  1. 1.Department of Biomedical SciencesCornell UniversityIthaca
  2. 2.Entomology DepartmentCornell UniversityIthaca
  3. 3.Department of Neurobiology and BehaviorCornell UniversityIthaca
  4. 4.Department of NeurologyChildren’s Hospital & Harvard Medical SchoolBoston

Personalised recommendations