Skip to main content

Assigning Glycosylation Sites and Microheterogeneities in Glycoproteins by Liquid Chromatography/Tandem Mass Spectrometry

  • Protocol

Part of the book series: Methods In Molecular Biology ((MIMB,volume 492))

Summary

Glycosylation of proteins is one of the most common posttranslational modifications which has its bearing on function and biological activity. Assigning the glycosylation sites and their inherent microheterogenei-ties are key structural issues addressing various glycoprotein functions. This chapter describes three different approaches all based on liquid chromatography/tandem mass spectrometry (LC/MS-MS), which are commonly employed for the assignment of protein glycosylation sites and their microheterogeneities. Comparing the LC/MS-MS analysis of a native glycoprotein tryptic digest to that of a deglycosylated tryptic digest can be accomplished through a routine LC/MS instrument. The use of a scanning mass spectrometer capable of switching between high-voltage and low-voltage scans, combined with monitoring carbohydrate-characteristic oxonium ions, is yet another analytical approach utilized for characterization of the glycosylation sites of glycoproteins. These two approaches do not address the problem originating from the ion suppression associated with coeluting peptides. The use of on-line glycopeptide enrichment in conjunction with LC/MS-MS is a third approach, which reduces ion suppression, thus offering a more sensitive approach to the characterization of protein glycosylation sites.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mackiewicz, A., Dewey, M. J., Berger, F. G., and Baumann, H. (1991) Acute phase mediated change in glycosylation of rat alpha-1-acid glycoprotein in transgenic mice. Glycobiology 1, 265–269

    Article  CAS  PubMed  Google Scholar 

  2. Maguire, T., and Breen, K. (1995) A decrease in neural sialyltransferase activity in Alzheimers disease. Dementia 6, 185–190

    CAS  PubMed  Google Scholar 

  3. Maguire, T., Thakore, J., Dinan, T. G., Hopwood, S., and Breen, K. C. (1997) Plasma sialyltransferase levels in psychiatric disorders as a possible indicator of HPA axis function. Biol. Psychiatry 41, 1131–1136

    Article  CAS  PubMed  Google Scholar 

  4. Parekh, R., Isenberg, D., Rook, G., and Roitt, A. (1989) Comparative analysis of disease-associated changes in the galactosylation of serum IgG. J. Autoimmun. 2, 101–114

    Article  CAS  PubMed  Google Scholar 

  5. Parekh, R. B., Dwek, R. A., Sutton, B. J., Fernandes, D. L., Leung, A., Stanworth, D., and Rademacher, T. W. (1985) Association of rheumatoid arthritis and primary osteoarthri-tis with changes in the glycosylation pattern of total serum IgG. Nature 316, 452–457

    Article  CAS  PubMed  Google Scholar 

  6. Turner, G. (1995) Haptoglobin-A potential reporter molecule for glycosylation changes in disease. Adv. Exp. Med. Biol. 376, 231–238

    CAS  PubMed  Google Scholar 

  7. Mechref, Y., and Novotny, M. V. (2002) Structural investigations of glycoconjugates at high sensitivity. Chem. Rev. 102, 321–370

    Article  CAS  PubMed  Google Scholar 

  8. Harvey, D. J. (2003) Identification of sites of glycosylation. Methods in Molecular Biology 211 (Protein Sequencing Protocols (2nd Edition), 371–383

    Google Scholar 

  9. Orlando, R., and Yang, Y. (1998) in “Mass Spectrometry of Biological Materials” (Larsen, B., and McEwen, C. N., Eds.), pp. 215–245, Dekker, New York, NY

    Google Scholar 

  10. Packer, N. H., and Harrison, M. J. (1998) Glycobiology and proteomics. Is mass spec-trometry the holy grail?. Electrophoresis 19, 1872–1882

    Article  CAS  PubMed  Google Scholar 

  11. Alving, K., Korner, R., Paulsen, H., and Peter-Katalinic, J. (1998) Nanospray-ESI low-energy CID and MALDI post-source decay for determination of O-glycosylation sites in MUC4 peptides. J. Mass Spectrom. 33, 1124–1133

    Article  CAS  Google Scholar 

  12. Iwase, H., Tanaka, A., Hiki, Y., Kokubo, T., Ishii-Karakasa, I., Hisatani, K., Koba-yashi, Y., and Hotta, K. (1998) Application of matrix-assisted laser desorption ioniza-tion time-of-flight mass spectrometry to the analysis of glycopeptide-containing multiple O-linked oligosaccharides. J. Chromatogr. B 709, 145–149

    Article  CAS  Google Scholar 

  13. Kuster, B., and Mann, M. (1999) 18O-Labe-ling of N -glycosylation sites to improve the identification of gel-separated glycoproteins using peptide mass mapping and database searching. Anal. Chem. 71, 1431–1440

    Article  CAS  PubMed  Google Scholar 

  14. Nemeth, J. F., Hochensang, G. P., Marnett, L. J., and Caprioli, R. M. (2001) Characterization of the glycosylation sites in cyclooxygenase-2 using mass spectrometry. Biochemistry 40, 3109–3116

    Article  CAS  PubMed  Google Scholar 

  15. Stults, N. L., and Cummings, R. D. (1993) O-linked fucose in glycoproteins from Chinese hamster ovary cells. Glycobiology 3, 589–596

    Article  CAS  PubMed  Google Scholar 

  16. Wolf, S. M., Ferrari, R. P., Traversa, S., and Biemann, K. (2000) Determination of the carbohydrate composition and the disulfide bond linkages of bovine lactoperoxidase by mass spectrometry. J. Mass Spectrom. 35, 210–217

    Article  CAS  PubMed  Google Scholar 

  17. Yang, Y., and Orlando, R. (1996) Identifying the glycosylation sites and site-specific carbohydrate heterogeneity of glycoproteins by matrix-assisted laser desorption/ioniza-tion mass spectrometry. Rapid Commun. Mass Spectrom. 10, 932–936

    Article  CAS  PubMed  Google Scholar 

  18. Zhu, X. G., Borchers, C., Bienstock, R. J., and Tomer, K. B. (2000) Biochemistry 39, 11194–11204

    Article  CAS  PubMed  Google Scholar 

  19. Huddleston, M. J., Bean, M. F., and Carr, S. A. (1993) Collisional fragmentation of glycopeptides by electrospray ionization LC MS and LC MSMS- methods for selective detection of glycopeptides in protein digests. Anal. Chem. 65, 877–884

    Article  CAS  PubMed  Google Scholar 

  20. Wilm, M., Neubauer, G., and Mann, M. (1996) Parent ion scans of unseparated pep-tide mixtures. Anal. Chem. 68, 527–533

    Article  CAS  PubMed  Google Scholar 

  21. Medzihradszky, K. F., Maltby, D. A., Hall, S. C., Settineri, C. A., and Burlingame, A. L. (1994) Characterization of protein N -glycosylation by reversed-phase micro-bore liquid chromatography/electrospray mass spectrometry, complementary mobile phases, and sequential exoglycosidase digestion. J. Am. Soc. Mass Spectrom. 5, 350–358

    Article  CAS  Google Scholar 

  22. Itoh, S., Kawasaki, N., Ohta, M., and Kay-akawa, T. (2002) Structural analysis of a glycoprotein by liquid chromatography-mass spectrometry and liquid chromatography with tandem mass spectrometry application to recombinant human thrombomodulin. J. Chromatogr. A 978, 141–152

    Article  CAS  PubMed  Google Scholar 

  23. Ritchie, M. A., Gill, A. C., Deery, M. J., and Lilley, K. (2002) Precursor ion scanning for detection and structural characterization of heterogenous glycopeptide mixtures. J. Am. Soc. Mass Spectrom. 13, 1065–1077

    Article  CAS  PubMed  Google Scholar 

  24. Mechref, Y., Muzikar, J., and Novotny, M. V. (2005) Comprehensive assessment of N -gly-cans derived from a murine monoclonal antibody: a case for multimethodological approach. Electrophoresis 26, 2034–2046

    Article  CAS  PubMed  Google Scholar 

  25. Harazono, A., Kawasaki, N., Kawanishi, T., and Hayakawa, T. (2005) Site-specific glycosylation analysis of human apolipoprotein B100 using LC/ESI MS/MS. Glycobiology 15, 447–462

    Article  CAS  PubMed  Google Scholar 

  26. Dage, J. L., Ackermann, B., and Halsall, H. B. (1998) Site localization of sialyl LewisX antigen on 1-acid glycoprotein by high-performance liquid chromatography-elec-trospray mass spectrometry. Glycobiology 8, 755–760

    Article  CAS  PubMed  Google Scholar 

  27. Wang, F., Nakouzi, A., Angeletti, R. H., and Casadevall, A. (2003) Site-specific characterization of the N -linked oligosaccharides of a murine immunoglobulin M by high-performance liquid chromatography/electrospray mass spectrometry. Anal. Biochem. 314, 266–280

    Article  CAS  PubMed  Google Scholar 

  28. Wuhrer, M., Balog, C. I. A., Koeleman, C. A. M., Deelder, M. A., and Hokke, C. H. (2005) New features of site-specific horseradish peroxidase (HPR) glycosylation uncovered by nano-LC-MS with repeated ion-isolation/fragmentation cycles. Biochim. Biophys Acta 1723, 229–239

    CAS  PubMed  Google Scholar 

  29. Wuhrer, M., Koeleman, C. A. M., Hokke, C. H., and Deelder, A. M. (2005) Protein glycosylation analyzed by normal-phase nano-liquid chromatography-mass spec-trometry of glycopeptides. Anal. Chem. 77, 886–894

    Article  CAS  PubMed  Google Scholar 

  30. Larsen, M. R., Hojrup, P., and Roepstorff, P. (2005) Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential micro-columns and mass spectrometry. Mol. Cell. Proteomics 4, 107–119

    CAS  PubMed  Google Scholar 

  31. Tajiri, M., Yoshida, S., and Wada, Y. (2005) Differential analysis of site-specific glycans on plasma and cellular fibronectins: application of a hydrophilic affinity method for glycopep-tide enrichment. Glycobiology 15, 1332–1340

    Article  CAS  PubMed  Google Scholar 

  32. Wada, Y., Tajiri, M., and Yoshida, S. (2004) Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal. Chem. 76, 6560–6565

    Article  CAS  PubMed  Google Scholar 

  33. Hagglund, P., Bunkenborg, J., Elortza, F., Jensen Ole, N., and Roepstorff, P. (2004) A new strategy for identification of N -glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosyla-tion. J. Proteome Res. 3, 556–566

    Article  PubMed  Google Scholar 

  34. Bunkenborg, J., Pilch, B. J., Podteleinikov, A. V., and Wisniewski, J. R. (2004) Screening for N -glycosylated proteins by liquid chromatography mass spectrometry. Pro-teomics 4, 454–465

    CAS  Google Scholar 

  35. Fu, D., and Van Halbeek, H. (1992) N -Glycosylation site mapping of human serotransferrin by serial lectin affinity chro-matography, fast atom bombardment-mass spectrometry, and proton nuclear magnetic resonance spectroscopy. Anal. Biochem. 206, 53–63

    Article  CAS  PubMed  Google Scholar 

  36. Garcia, R., Rodriguez, R., Montesino, R., Besada, V., Gonzalez, J., and Cremata, J. A. (1995) Concanavalin A- and wheat germ agglutinin-conjugated lectins as a tool for the identification of multiple N -glycosyla-tion sites in heterologous protein expressed in yeast. Anal. Biochem. 231, 342–348

    Article  CAS  PubMed  Google Scholar 

  37. Madera, M., Mechref, Y., and Novotny, M.V. (2005) Combining lectin microcolumns with high-resolution separation techniques for enrichment of glycoproteins and glyco-peptides. Anal. Chem. 77, 4081–4090

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants No. GM24349 from the National Institutes of Health (NIH) and No. RR018942 from NCRR/NIH as a contribution from the National Center for Gly-comics and Glycoproteomics at Indiana University.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mechref, Y., Madera, M., Novotny, M.V. (2009). Assigning Glycosylation Sites and Microheterogeneities in Glycoproteins by Liquid Chromatography/Tandem Mass Spectrometry. In: Lipton, M.S., Paša-Tolic, L. (eds) Mass Spectrometry of Proteins and Peptides. Methods In Molecular Biology, vol 492. Humana Press. https://doi.org/10.1007/978-1-59745-493-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-493-3_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-48-0

  • Online ISBN: 978-1-59745-493-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics