Skip to main content

Integrating Accelerated Tryptic Digestion into Proteomics Workflows

  • Protocol

Part of the book series: Methods In Molecular Biology ((MIMB,volume 492))

Summary

An accelerated protein digestion procedure is described that features a microscale trypsin cartridge operated under aqueous-organic conditions. High sequence coverage digestions obtained in seconds with small amounts of enzyme are possible with the approach, which also supports online integration of digestion with reversed-phase protein separation. The construction and operation of effective digestor cartridges for rapid sample processing are described. For workflows involving chromatographic protein separation an easily assembled fluidic system is presented, which inserts the digestion step after column-based separation. Successful integration requires dynamic effluent titration immediately prior to transmission through the digestor. This is achieved through the co-ordination of the column gradient system with an inverse gradient system to produce steady pH and organic solvent levels. System assembly and operation sufficient for achieving digestion and identification of subnanogram levels of protein are described.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Klammer, A. A., and MacCoss, M. J. (2006) Effects of modified digestion schemes on the identification of proteins from complex mixtures. J. Proteome Res. 5, 695–700.

    Article  CAS  PubMed  Google Scholar 

  2. Lopez-Ferrer, D., Canas, B., Vazquez, J., Lodeiro, C., Rial-Otero, R., Moura, I., and Capelo, J. L. (2006) Sample treatment for protein identification by mass spectrome-try-based techniques. TrAC-Trends Anal. Chem. 25, 996–1005.

    Article  CAS  Google Scholar 

  3. Stults, J. T., and Arnott, D. (2005) Proteomics. Methods Enzymol 402, 245–289.

    Article  CAS  PubMed  Google Scholar 

  4. Wedemeyer, W. J., Welker, E., Narayan, M., and Scheraga, H. A. (2000) Disulfide bonds and protein folding. Biochemistry 39, 4207–4216.

    Article  CAS  PubMed  Google Scholar 

  5. Lundell, N., and Schreitmuller, T. (1999) Sample preparation for peptide mapping — A pharmaceutical quality-control perspective. Anal. Biochem. 266, 31–47.

    Article  CAS  PubMed  Google Scholar 

  6. Hsieh, Y. L. F., Wang, H. Q., Elicone, C., Mark, J., Martin, S. A., and Regnier, F. (1996) Automated analytical system for the examination of protein primary structure. Anal. Chem. 68, 455–462.

    Article  CAS  PubMed  Google Scholar 

  7. Wang, S. H., and Regnier, F. E. (2001) Proteolysis of whole cell extracts with immobilized enzyme columns as part of multidimensional chromatography. J. Chromatogr. A 913, 429–436.

    Article  CAS  PubMed  Google Scholar 

  8. Slysz, G. W., and Schriemer, D. C. (2003) On-column digestion of proteins in aqueous-organic solvents. Rapid Commun. Mass Spectrom. 17, 1044–1050.

    Article  CAS  PubMed  Google Scholar 

  9. Peterson, D. S., Rohr, T., Svec, F., and Frechet, J. M. J. (2002) Enzymatic microreactor-on-a-chip: Protein mapping using trypsin immobilized on porous polymer monoliths molded in channels of microfluidic devices. Anal. Chem. 74, 4081–4088.

    Article  CAS  PubMed  Google Scholar 

  10. Cooper, J. W., Chen, J. Z., Li, Y., and Lee, C. S. (2003) Membrane-based nanoscale proteolytic reactor enabling protein digestion, peptide separation, and protein identification using mass spectrometry. Anal. Chem. 75, 1067–1074.

    Article  CAS  PubMed  Google Scholar 

  11. Litborn, E., Emmer, A., and Roeraade, J. (1999) Chip-based nanovials for tryptic digest and capillary electrophoresis. Anal. Chim. Acta 401, 11–19.

    Article  CAS  Google Scholar 

  12. Harris, W. A., and Reilly, J. P. (2002) Onprobe digestion of bacterial proteins for MALDI-MS. Anal. Chem. 74, 4410–4416.

    Article  CAS  PubMed  Google Scholar 

  13. Lopez-Ferrer, D., Capelo, J. L., and Vazquez, J. (2005) Ultra fast trypsin digestion of proteins by high intensity focused ultrasound. J. Proteome Res. 4, 1569–1574.

    Article  CAS  PubMed  Google Scholar 

  14. Pramanik, B. N., Mirza, U. A., Ing, Y. H., Liu, Y. H., Bartner, P. L., Weber, P. C., and Bose, M. K. (2002) Microwave-enhanced enzyme reaction for protein mapping by mass spectrometry: A new approach to protein digestion in minutes. Protein Sci. 11, 2676–2687.

    Article  CAS  PubMed  Google Scholar 

  15. Sun, W., Gao, S. J., Wang, L. J., Chen, Y., Wu, S. Z., Wang, X. R., Zheng, D. X., and Gao, Y. H. (2006) Microwave-assisted protein preparation and enzymatic digestion in proteomics. Mol. Cell. Proteomics 5, 769–776.

    CAS  PubMed  Google Scholar 

  16. Havlis, J., Thomas, H., Sebela, M., and Shevchenko, A. (2003) Fast-response proteomics by accelerated in-gel digestion of proteins. Anal. Chem. 75, 1300–1306.

    Article  CAS  PubMed  Google Scholar 

  17. Finehout, E. J., Cantor, J. R., and Lee, K. H. (2005) Kinetic characterization of sequencing grade modified trypsin. Proteomics 5, 2319–2321.

    Article  CAS  PubMed  Google Scholar 

  18. Sebela, M., Stosova, T., Havlis, J., Wielsch, N., Thomas, H., Zdrahal, Z., and Shevchenko, A. (2006) Thermostable trypsin conjugates for high-throughput proteomics: synthesis and performance evaluation. Proteomics 6, 2959–2963.

    Article  CAS  PubMed  Google Scholar 

  19. Slysz, G. W., Lewis, D. F., and Schriemer, D. C. (2006) Detection and identification of sub-nanogram levels of protein in a nanoLC-trypsin-MS system. J. Proteome Res. 5, 1959–1966.

    Article  CAS  PubMed  Google Scholar 

  20. Roe, M. R., and Griffin, T. J. (2006) Gel- free mass spectrometry-based high throughput proteomics: Tools for studying biological response of proteins and proteomes. Pro-teomics 6, 4678–4687.

    CAS  Google Scholar 

  21. Linke, T., Ross, A. C., and Harrison, E. H. (2006) Proteomic analysis of rat plasma by two-dimensional liquid chromatography and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J. Chromatogr. A 1123, 160–169.

    Article  CAS  PubMed  Google Scholar 

  22. Simpson, D. C., Ahn, S., Pasa-Tolic, L., Bogdanov, B., Mottaz, H. M., Vilkov, A. N., Anderson, G. A., Lipton, M. S., and Smith, R. D. (2006) Using size exclusion chromatography-RPLC and RPLC-CIEF as two-dimensional separation strategies for protein profiling. Electrophoresis 27, 2722–2733.

    Article  CAS  PubMed  Google Scholar 

  23. Sharma, S., Simpson, D. C., Tolic, N., Jaitly, N., Mayampurath, A. M., Smith, R. D., and Pasa-Tolic, L. (2007) Proteomic profiling of intact proteins using WAX-RPLC 2-D separations and FTICR mass spectrometry. J. Proteome Res. 6, 602–610.

    Article  CAS  PubMed  Google Scholar 

  24. Ethier, M., Hou, W. M., Duewel, H. S., and Figeys, D. (2006) The proteomic reactor: A microfluidic device for processing minute amounts of protein prior to mass spectrome-try analysis. J. Proteome Res. 5, 2754–2759.

    Article  CAS  PubMed  Google Scholar 

  25. Slysz, G. W., and Schriemer, D. C. (2005) Blending protein separation and peptide analysis through real-time proteolytic digestion. Anal. Chem. 77, 1572–1579.

    Article  CAS  PubMed  Google Scholar 

  26. Belder, D., Deege, A., Husmann, H., Kohler, F., and Ludwig, M. (2001) Cross-linked poly(vinyl alcohol) as permanent hydrophilic column coating for capillary electrophoresis. Electrophoresis 22, 3813–3818.

    Article  CAS  PubMed  Google Scholar 

  27. Espinosa, S., Bosch, E., and Roses, M. (2000) Retention of ionizable compounds on HPLC. 5. pH scales and the retention of acids and bases with acetonitrile-water mobile phases. Anal. Chem. 72, 5193–200.

    Article  CAS  PubMed  Google Scholar 

  28. Griebenow, K., and Klibanov, A. M. (1996) On protein denaturation in aqueous-organic mixtures but not in pure organic solvents. J. Am. Chem. Soc. 118, 11695–11700.

    Article  CAS  Google Scholar 

  29. Ruckenstein, E., and Shulgin, I. L. (2006) Effect of salts and organic additives on the solubility of proteins in aqueous solutions. Adv. Colloid Interface Sci. 123, 97–103.

    Article  PubMed  Google Scholar 

  30. Liu, J. K., and Lee, M. L. (2006) Permanent surface modification of polymeric capillary electrophoresis microchips for protein and peptide analysis. Electrophoresis 27, 3533–3546.

    Article  CAS  PubMed  Google Scholar 

  31. Doherty, E. A. S., Meagher, R. J., Albarghouthi, M. N., and Barron, A. E. (2003) Microchannel wall coatings for protein separations by capillary and chip electrophoresis. Electrophoresis 24, 34–54.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Slysz, G.W., Schriemer, D.C. (2009). Integrating Accelerated Tryptic Digestion into Proteomics Workflows. In: Lipton, M.S., Paša-Tolic, L. (eds) Mass Spectrometry of Proteins and Peptides. Methods In Molecular Biology, vol 492. Humana Press. https://doi.org/10.1007/978-1-59745-493-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-493-3_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-48-0

  • Online ISBN: 978-1-59745-493-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics