Identification of Motor Protein Cargo by Yeast 2-Hybrid and Affinity Approaches

  • Yuguo Zhang
  • Rong Wang
  • Holly Jefferson
  • Ann O. Sperry
Part of the Methods in Molecular Biology™ book series (MIMB, volume 392)


Identification of the molecular composition of the cargo transported by individual kinesin motors is critical to an understanding of both motor function and regulation of the proper intracellular placement of numerous cellular components including proteins, RNA, and organelles. In this chapter, we describe methods to identify the motor tail sequences responsible for cargo binding by expression of green fluorescent protein (GFP)-motor tail fusion proteins in mammalian cells. In addition, we detail two complementary approaches to identify specific proteins associated with these targeting sequences: a yeast 2-hybrid screen and affinity chromatography.

Key Words

GFP yeast 2-hybrid affinity chromatography kinesin motor protein KIFC1 protein-protein interaction 


  1. 1.
    Barton, N.R. and Goldstein, L.S. (1996) Going mobile: microtubule motors and chromosome segregation. Proc. Natl. Acad. Sci. USA 93(5), 1735–1742.CrossRefPubMedGoogle Scholar
  2. 2.
    Hirokawa, N. and Takemura, R. (2004) Kinesin superfamily proteins and their various functions and dynamics. Exp. Cell Res. 301(1), 50–59.CrossRefPubMedGoogle Scholar
  3. 3.
    Kull, F.J. (2000) Motor proteins of the kinesin superfamily: structure and mechanism. Essays Biochem. 35, 61–73.PubMedGoogle Scholar
  4. 4.
    Wozniak, M.J., Milner, R., and Allan, V. (2004) N-terminal kinesins: many and various. Traffic 5(6), 400–410.CrossRefPubMedGoogle Scholar
  5. 5.
    Ems-McClung, S.C., Zheng, Y., and Walczak, C.E. (2004) Importin alpha/beta and RAN-GTP regulate XCTK2 microtubule binding through a bipartite nuclear localization signal. Mol. Biol. Cell 15(1), 46–57.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang, Y. and Sperry, A.O. (2004) Comparative analysis of two C-terminal kinesin motor proteins: KIFC1 and KIFC5A. Cell Motil. Cytoskelet. 58(4), 213–230.CrossRefGoogle Scholar
  7. 7.
    Macho, B., Brancorsini, S., Fimia, G.M., Setou, M., Hirokawa, N., and Sassone-Corsi, P. (2002) CREM-dependent transcription in male germ cells controlled by a kinesin. Science 298(5602), 2388–2390.CrossRefPubMedGoogle Scholar
  8. 8.
    Nakagawa, T., Setou, M., Seog, D., Ogasawara, K., Dohmae, N., Takio, K., and Hirokawa, N. (2000) A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell 103(4), 569–581.CrossRefPubMedGoogle Scholar
  9. 9.
    Setou, M., Nakagawa, T., Seog, D.H., and Hirokawa, N. (2000) Kinesin superfamily motor protein KIF17 and Mlin-10 in NMDA receptor-containing vesicle transport. Science 288(5472), 1796–1802.CrossRefPubMedGoogle Scholar
  10. 10.
    Bowman, A.B., Kamal, A., Ritchings, B.W., Philip, A.V., McGrail, M., Gindhart, J.G., and Goldstein, L.S. (2000) Kinesin-dependent axonal transport is mediated by the Sunday Driver (Syd) protein. Cell 103(4), 583–594.CrossRefPubMedGoogle Scholar
  11. 11.
    Konecna, A., Frischknecht, R.J., Kinter, A., Ludwig, M., Steuble, V., Meskenaite, M., Indermuhle, M., Engel, C., Cen, J.-M., Mateos, P.S., and Sonderegger, P. (2006) Calsyntenin-1 docks vesicular cargo to kinesin-1. Mol. Biol. Cell 17(8), 3651–3663.CrossRefPubMedGoogle Scholar
  12. 12.
    Verhey, K.J., Meyer, D., Deehan, R., Blenis, J., Schnapp, B.J., Rapoport, T.A., and Margolis, B. (2001) Cargo of kinesin identified as Jip scaffolding proteins and associated signaling molecules. J. Cell Biol. 152(5), 959–970.CrossRefPubMedGoogle Scholar
  13. 13.
    Marszalek, J.R. and Goldstein, L.S. (2000) Understanding the functions of kinesin-II. Biochim. Biophys. Acta 1496(1), 142–150.CrossRefPubMedGoogle Scholar
  14. 14.
    McDonald, H.B. and Goldstein, L.S. (1990) Identification and characterization of a gene encoding a kinesin-like protein in Drosophila. Cell 61(6), 991–1000.CrossRefGoogle Scholar
  15. 15.
    Hatsumi, M. and Endow, S.A. (1992) Mutants of the microtubule motor protein, nonclaret disjunctional, affect spindle structure and chromosome movement in meiosis and mitosis. J. Cell Sci. 101(Pt. 3), 547–559.PubMedGoogle Scholar
  16. 16.
    Walczak, C.E., Verma, S., and Mitchison, T.J. (1997) Xctk2: a kinesin-related protein that promotes mitotic spindle assembly in Xenopus laevis egg extracts. J. Cell Biol. 136(4), 859–870.CrossRefPubMedGoogle Scholar
  17. 17.
    Saito, N., Okada, Y., Noda, Y., Kinoshita, Y., Kondo, S., and Hirokawa, N. (1997) KIFC2 is a novel neuron-specific C-terminal type kinesin superfamily motor for dendritic transport of multivesicular body-like organelles. Neuron 18(3), 425–438.CrossRefPubMedGoogle Scholar
  18. 18.
    Yang, W.-X. and Sperry, A.O. (2003) The C-terminal kinesin motor KIFC1 participates in acrosome biogenesis and vesicle transport. Biol. Reprod. 69, 1719–1729.CrossRefPubMedGoogle Scholar
  19. 19.
    Yang, W.-X., Jefferson, H., and Sperry, A.O. (2006) The molecular motor KIFC1 associates with a complex containing nucleoporin NUP62 that is regulated during development and by the small GTPase RAN. Biol. Reprod. 74(4), 684–690.CrossRefPubMedGoogle Scholar
  20. 20.
    Christodoulou, A., Lederer, C.W., Surrey, T., Vernos, I., and Santama, N. (2006) Motor protein KIFC5A interacts with NUBP1 and NUBP2, and is implicated in the regulation of centrosome duplication. J. Cell Sci. 119 (Pt. 10), 2035–2047.CrossRefPubMedGoogle Scholar
  21. 21.
    Ausubel, F.M. (1987) Current Protocols in Molecular Biology. Greene/Wiley, New York.Google Scholar
  22. 22.
    Guthrie, C., and Fink, G.R. (1991) Guide to Yeast Genetics and Molecular and Cell Biology. Academic Press, Amsterdam.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Yuguo Zhang
    • 1
  • Rong Wang
    • 1
  • Holly Jefferson
    • 1
  • Ann O. Sperry
    • 1
  1. 1.Department of Anatomy and Cell Biology, Brody School of MedicineEast Carolina UniversityGreenville

Personalised recommendations