Advertisement

In Vitro and In Vivo Analysis of Microtubule-Destabilizing Kinesins

  • Jason Stumpff
  • Jeremy Cooper
  • Sarah Domnitz
  • Ayana T. Moore
  • Kathleen E. Rankin
  • Mike Wagenbach
  • Linda Wordeman
Part of the Methods in Molecular Biology™ book series (MIMB, volume 392)

Abstract

Cellular microtubules are rigid in comparison to other cytoskeletal elements (1, 2). To facilitate cytoplasmic remodeling and timely responses to cell signaling events, microtubules depolymerize and repolymerize rapidly at their ends (3). These dynamic properties are critically important for many cellular functions, such as spindle assembly, the capture and segregation of chromosomes during cell division and cell motility. Microtubule dynamics are spatially and temporally controlled in the cell by accessory proteins. Molecular motor proteins of the kinesin superfamily that act to destabilize microtubules play important roles in this regulation (4).

Key Words

Kinesin microtubule MCAK cytoskeleton 

References

  1. 1.
    Felgner, H., Frank, R., and Schliwa, M. (1996) Flexural rigidity of microtubules measured with the use of optical tweezers. J. Cell Sci. 109(Pt. 2), 509–516.PubMedGoogle Scholar
  2. 2.
    Gittes, F., Mickey, B., Nettleton, J., and Howard, J. (1993) Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, 923–934.CrossRefPubMedGoogle Scholar
  3. 3.
    Desai, A. and Mitchison, T.J. (1997) Microtubule polymerization dynamics. Annu. Rev. CellDev. Biol. 13, 83–117.CrossRefGoogle Scholar
  4. 4.
    Wordeman, L. (2005) Microtubule-depolymerizing kinesins. Curr. Opin. Cell Biol. 17, 82–88.CrossRefPubMedGoogle Scholar
  5. 5.
    Lawrence, C.J., Dawe, R.K., Christie, K.R., Cleveland, D.W., Dawson, S.C., Endow, S.A., Goldstein, L.S., Goodson, H.V., Hirokawa, N., Howard, J., Malmberg, R.L., McIntosh, J.R., Miki, H., Mitchison, T.J., Okada, Y., Reddy, A.S., Saxton, W.M., Schliwa, M., Scholey, J.M., Vale, R.D., Walczak, C.E., and Wordeman, L. (2004) A standardized kinesin nomenclature. J. Cell Biol. 167, 19–22.CrossRefPubMedGoogle Scholar
  6. 6.
    Chu, H.M., Yun, M., Anderson, D.E., Sage, H., Park, H.W., and Endow, S.A. (2005) Kar3 interaction with Cik1 alters motor structure and function. EMBO J. 24, 3214–3223.CrossRefPubMedGoogle Scholar
  7. 7.
    Sproul, L.R., Anderson, D.J., Mackey, A.T., Saunders, W.S., and Gilbert, S.P. (2005) Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends. Curr. Biol. 15, 1420–1427.CrossRefPubMedGoogle Scholar
  8. 8.
    Desai, A., Verma, S., Mitchison, T.J., and Walczak, C.E. (1999) Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78.CrossRefPubMedGoogle Scholar
  9. 9.
    Wordeman, L. and Mitchison, T.J. (1995) Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J. Cell Biol. 128, 95–104.CrossRefPubMedGoogle Scholar
  10. 10.
    Ovechkina, Y., Wagenbach, M., and Wordeman, L. (2002) K-loop insertion restores microtubule depolymerizing activity of a “neckless” MCAK mutant. J. Cell Biol. 159, 557–562.CrossRefPubMedGoogle Scholar
  11. 11.
    Moore, A. and Wordeman, L. (2004) C-terminus of mitotic centromere-associated kinesin (MCAK) inhibits its lattice-stimulated ATPase activity. Biochem. J. 383, 227–235.CrossRefPubMedGoogle Scholar
  12. 12.
    Hunter, A.W., Caplow, M., Coy, D.L., Hancock, W.O., Diez, S., Wordeman, L., and Howard, J. (2003) The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol. Cell 11, 445–457.CrossRefPubMedGoogle Scholar
  13. 13.
    Hyman, A.A., Salser, S., Drechsel, D.N., Unwin, N., and Mitchison, T.J. (1992) Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol. Biol. Cell 3, 1155–1167.PubMedGoogle Scholar
  14. 14.
    Gonzalez-Garay, M.L. and Cabral, F. (1996) Alpha-tubulin limits its own synthesis: evidence for a mechanism involving translational repression. J. Cell Biol. 135, 1525–1534.CrossRefPubMedGoogle Scholar
  15. 15.
    Cleveland, D.W., Lopata, M.A., Sherline, P., and Kirschner, M.W. (1981) Unpolymerized tubulin modulates the level of tubulin mRNAs. Cell 25, 537–546.CrossRefPubMedGoogle Scholar
  16. 16.
    Hyman, A., Drechsel, D., Kellogg, D., Salser, S., Sawin, K., Steffen, P., Wordeman, L., and Mitchison, T. (1991) Preparation of modified tubulins. Methods Enzymol. 196, 478–485.CrossRefPubMedGoogle Scholar
  17. 17.
    O’Brien, E.T., Salmon, E.D., and Erickson, H.P. (1997) How calcium causes microtubule depolymerization. Cell Motil. Cytoskelet. 36, 125–135.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Jason Stumpff
    • 1
  • Jeremy Cooper
    • 1
  • Sarah Domnitz
    • 1
  • Ayana T. Moore
    • 1
  • Kathleen E. Rankin
    • 1
  • Mike Wagenbach
    • 1
  • Linda Wordeman
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of Washington School of MedicineSeattle

Personalised recommendations