Chemical-Genetic Inhibition of Sensitized Mutant Unconventional Myosins

  • Ryan L. Karcher
  • D. William ProvanceJr.
  • Peter G. Gillespie
  • John A. Mercer
Part of the Methods in Molecular Biology™ book series (MIMB, volume 392)


The construction of a sensitized mutant unconventional myosin is an excellent method for determining the function of the individual myosin against a background of related myosins with partially overlapping functions. In this chapter, we outline the steps involved in sensitizing myosin by mutation and screening them against panels of nucleotide analogs, including transfection, microinjection, and actin co-sedimentation in vitro. We also describe conditions and considerations involved in designing functional experiments after a mutant and cognate analog have been identified. The powerful strategy of chemical genetics, when correctly applied to unconventional myosins, enables both the specific and selectable inhibition of the target motor with outstanding internal controls.

Key Words

ATP hydrolysis chemical genetics myosin-Vb myosin-1c unconventional myosins 


  1. 1.
    Sellers, J.R. (2000) Myosins: a diverse superfamily. Biochim. Biophys. Acta 1496, 3–22.CrossRefPubMedGoogle Scholar
  2. 2.
    Kalhammer, G. and Bahler, M. (2000) Unconventional myosins. Essays Biochem. 35, 33–42.PubMedGoogle Scholar
  3. 3.
    Richards, T.A. and Cavalier-Smith, T. (2005) Myosin domain evolution and the primary divergence of eukaryotes. Nature 436, 1113–1118.CrossRefPubMedGoogle Scholar
  4. 4.
    Mermall, V., Post, P.L., and Mooseker, M.S. (1998) Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279, 527–533.CrossRefPubMedGoogle Scholar
  5. 5.
    Reck-Peterson, S.L., Provance, D.W., Mooseker, M.S., and Mercer, J.A. (2000) Class V myosins. Biochim. Biophys. Acta 1496, 36–51.CrossRefPubMedGoogle Scholar
  6. 6.
    Ostap, E.M. and Pollard, T.D. (1996) Overlapping functions of myosin-I isoforms? J. Cell Biol. 133, 221–224.CrossRefPubMedGoogle Scholar
  7. 7.
    Coluccio, L.M. (1997) Myosin I. Am. J. Physiol. 273, C347–C359.PubMedGoogle Scholar
  8. 8.
    Reizes, O., Barylko, B., Li, C., Südhof, T.C., and Albanesi, J.A. (1994) Domain structure of a mammalian myosin Iβ (MMIβ). Proc. Natl. Acad. Sci. USA 91, 6349–6353.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhao, L.P., Koslovsky, J.S., Reinhard, J., Bähler, M., Witt, A.E., Provance, D.W., and Mercer, J.A. (1996) Cloning and characterization of myr 6, an unconventional myosin of the dilute/myosin-V family. Proc. Natl. Acad. Sci. USA 93, 10826–10831.CrossRefPubMedGoogle Scholar
  10. 10.
    Specht, K.M. and Shokat, K.M. (2002) The emerging power of chemical genetics. Curr. Opin. Cell Biol. 14, 155–159.CrossRefPubMedGoogle Scholar
  11. 11.
    Liu, Y., Shah, K., Yang, F., Witucki, L., and Shokat, K.M. (1998). Engineering Src family protein kinases with unnatural nucleotide specificity. Chem. Biol. 5, 91–101.CrossRefPubMedGoogle Scholar
  12. 12.
    Habelhah, H., Shah, K., Huang, L., Burlingame, A.L., Shokat, K.M., and Ronai, Z. (2001) Identification of new JNK substrate using ATP pocket mutant JNK and a corresponding ATP analogue. J. Biol. Chem. 276, 18090–18095.CrossRefPubMedGoogle Scholar
  13. 13.
    Gillespie, P.G., Gillespie, S.K.H., Mercer, J.A., Shah, K., and Shokat, K.M. (1999) Engineering of the myosin-I beta nucleotide-binding pocket to create selective sensitivity to N6-modified ADP analogs. J. Biol. Chem. 274, 31373–31381.CrossRefPubMedGoogle Scholar
  14. 14.
    Holt, J.R., Gillespie, S.K.H., Provance, D.W., Shah, K., Shokat, K.M., Corey, D.P., Mercer, J.A., and Gillespie, P.G. (2002) A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108, 371–381.CrossRefPubMedGoogle Scholar
  15. 15.
    Provance, D.W., Gourley, C.R., Silan, C.M., Cameron, L.C., Shokat, K.M., Goldenring, J.R., Shah, K., Gillespie, P.G., and Mercer, J.A. (2004) Chemical-genetic inhibition of a sensitized mutant myosin-Vb demonstrates a role in peripheral-pericentriolar membrane traffic. Proc. Natl. Acad. Sci. USA 101, 1868–1873.CrossRefPubMedGoogle Scholar
  16. 16.
    Gopalakrishna, R. and Anderson, W.B. (1985) Monovalent cation-insensitive hydrophobic region on calmodulin facilitates the rapid isolation and quantitation of calmodulin free from other Ca2+-dependent hydrophobic proteins. J. Appl. Biochem. 7, 311–322.PubMedGoogle Scholar
  17. 17.
    Lin, T., Tang, N., and Ostap, E.M. (2005) Biochemical and motile properties of Myo1 b splice isoforms. J. Biol. Chem. 280, 41562–41567.CrossRefPubMedGoogle Scholar
  18. 18.
    Kron, S.J., Toyoshima, Y.Y., Uyeda, T.Q., and Spudich, J.A. (1991) Assays for actin sliding movement over myosin-coated surfaces. Methods Enzymol. 196, 399–416.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Ryan L. Karcher
    • 1
  • D. William ProvanceJr.
    • 1
  • Peter G. Gillespie
    • 2
  • John A. Mercer
    • 1
  1. 1.McLaughlin Research InstituteGreat Falls
  2. 2.Oregon Hearing Research Center and Vollum InstituteOregon Health and Science UniversityPortland

Personalised recommendations