Skip to main content

Structure Determination of the Motor Domain of Yeast Kinesin Kar3 by X-Ray Crystallography

  • Protocol
  • 745 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 392))

Abstract

Kinesins are molecular motors that share a common structural core with myosins and G proteins and play diverse roles in organelle transport and cell division and movement. Kinesin motors use the chemical energy derived from ATP hydrolysis to generate force for moving on the microtubule track. The mechanism by which kinesin motors capture the energy from ATP hydrolysis and convert it to a force is not completely known. Structural elements that undergo movement and the force-producing conformational changes of the motor must be identified to elucidate this mechanism. X-ray crystallography is the method of choice for elucidating the structural changes of kinesin motors during ATP hydrolysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Howard, J. (1996) The movement of kinesin along microtubules. Annu. Rev. Physiol. 58, 703–729.

    Article  CAS  PubMed  Google Scholar 

  2. Vale, R.D. and Fletterick, R.J. (1997) The design plan of kinesin motors. Annu. Rev. Cell Dev. Biol. 13, 745–777.

    Article  CAS  PubMed  Google Scholar 

  3. Sack, S., Kull, F.J., and Mandelkow, E. (1999) Motor proteins of the kinesin family. Structures, variations, and nucleotide binding sites. Eur. J. Biochem. 262, 1–11.

    Article  CAS  PubMed  Google Scholar 

  4. Sakowicz, R., Berdelis, M.S., Ray, K., Blackburn, C.L., Hopmann, C., Faulkner, D.J., and Goldstein, L.S.B. (1998) A marine natural product inhibitor of kinesin motors. Science 280, 292–295.

    Article  CAS  PubMed  Google Scholar 

  5. Mayer, T.U., Kapoor, T.M., Haggarty, S.J., King, R.W., Schreiber, S.L., and Mitchison, T.J. (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286, 971–974.

    Article  CAS  PubMed  Google Scholar 

  6. Marx, A., Muller, J., and Mandelkow, E. (2005) The structure of microtubule motor proteins. Adv. Protein Chem. 71, 299–344.

    Article  CAS  PubMed  Google Scholar 

  7. Way, M., Pope, B., Gooch, J., Hawkins, M., and Weeds, A.G. (1990) Identification of a region in segment 1 of gelsolin critical for actin binding. EMBO J. 9, 4103–4109.

    CAS  PubMed  Google Scholar 

  8. Song, H. and Endow, S.A. (1996) Binding sites on microtubules of kinesin motors of the same or opposite polarity. Biochemistry 35, 11203–11209.

    Article  CAS  PubMed  Google Scholar 

  9. Chu, H.M., Yun, M., Anderson, D.E., Sage, H., Park, H.W., and Endow, S.A. (2005) Kar3 interaction with Cik1 alters motor structure and function. EMBO J. 24, 3214–3223.

    Article  CAS  PubMed  Google Scholar 

  10. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  11. Jancarik, J. and Kim, S.H. (1991) Sparse Matrix sampling: a screening method for crystallization of proteins. J. Appl. Crystallogr. 24, 409–411.

    Article  CAS  Google Scholar 

  12. Mcpherson, A. (1989) Preparation and Analysis of Protein Crystals. Krieger, Malabar, FL.

    Google Scholar 

  13. Feher, G. and Kam, Z.(1985) Nucleation and growth of protein crystals: general principles and assays. Methods Enzymol. 114, 77–112.

    Article  CAS  PubMed  Google Scholar 

  14. Yun, M., Zhang, X., Park, C.G., Park, H.W., and Endow, S.A. (2001) A structural pathway for activation of the kinesin motor ATPase. EMBO J. 20, 2611–2618.

    Article  CAS  PubMed  Google Scholar 

  15. Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326.

    Article  CAS  Google Scholar 

  16. Dauter, Z. (1999) Data-collection strategies. Acta Crystallogr. D. 55, 1703–1717.

    Article  CAS  PubMed  Google Scholar 

  17. Collaborative Computational Project N4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763.

    Article  Google Scholar 

  18. Vagin, A. and Teplyakov, A. (1997) MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025.

    Article  CAS  Google Scholar 

  19. Jones, T.A., Zou, J.Y., Cowan, S.W., and Kjeldgaard, M. (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119.

    Article  PubMed  Google Scholar 

  20. Murshudov, G.N., Vagin, A.A., and Dodson, E.J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255.

    Article  CAS  PubMed  Google Scholar 

  21. Perrakis, A., Morris, R., and Lamzin, V.S. (1999) Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463.

    Article  CAS  PubMed  Google Scholar 

  22. Brunger, A.T. (1993) Assessment of phase accuracy by cross validation: the free R value. Methods and applications. Acta Crystallogr. D. 49, 24–36.

    Article  CAS  PubMed  Google Scholar 

  23. Read, R.J. and Schleicher, A.J. (1988) A phased translation function. J. Appl. Crystallogr. 21, 490–500.

    Article  CAS  Google Scholar 

  24. Laskowski, R.A., Moss, D.S., and Thornton, J.M. (1993) Main-chain bond lengths and bond angles in protein structures. J. Mol. Biol. 231, 1049–1067.

    Article  CAS  PubMed  Google Scholar 

  25. Hendrickson, W.A. (1985) Stereochemically restrained refinement of macromolecular structures. Methods Enzymol. 115, 252–270.

    Article  CAS  PubMed  Google Scholar 

  26. Chandra, R., Salmon, E.D., Erickson, H.P., Lockhart, A., and Endow, S.A. (1993) Structural and functional domains of the Drosophila ncd microtubule motor protein. J. Biol. Chem. 268, 9005–9013.

    CAS  PubMed  Google Scholar 

  27. Yun, M., Bronner, C.E., Park, C.G., Cha, S.S., Park, H.W., and Endow, S.A. (2003) Rotation of the stalk/neck and one head in a new crystal structure of the kinesin motor protein, Ncd. EMBO J. 22, 5382–5389.

    Article  CAS  PubMed  Google Scholar 

  28. Cope, M.T., Whisstock, J., Rayment, I., and Kendrick-Jones, J. (1996) Conservation within the myosin motor domain: implications for structure and function. Structure 4, 969–987.

    Article  CAS  PubMed  Google Scholar 

  29. Ponder, J.W. and Richards, F.M. (1987) Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J. Mol. Biol. 193, 775–791.

    Article  CAS  PubMed  Google Scholar 

  30. Pal, D. and Chakrabarti, P. (2002) On residues in the disallowed region of the Ramachandran map. Biopolymers 63, 195–206.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Park, HW. (2007). Structure Determination of the Motor Domain of Yeast Kinesin Kar3 by X-Ray Crystallography. In: Sperry, A.O. (eds) Molecular Motors. Methods in Molecular Biology™, vol 392. Humana Press. https://doi.org/10.1007/978-1-59745-490-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-490-2_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-665-8

  • Online ISBN: 978-1-59745-490-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics