Advertisement

Single-Molecule Observation of Rotation of F1-ATPase Through Microbeads

  • Takayuki Nishizaka
  • Kana Mizutani
  • Tomoko Masaike
Part of the Methods in Molecular Biology™ book series (MIMB, volume 392)

Abstract

F0F1-ATP synthase catalyzes the synthesis of ATP using proton-motive force across a membrane. When isolated, the F1 sector, composed of five polypeptide chains with a stoichiometry of α3β3γδε, solely hydrolyzes ATP into ADP and phosphate, and is thus called F1-ATPase. Rotation of a shaft domain in F0F1-ATP synthase has been hypothesized by Paul Boyer, and ultimately was confirmed by direct observation as rotation of the γ-subunit in an isolated α3β3γ subcomplex. Unitary turnover of ATP induces 120° steps, consistent with the configuration of three catalytic sites arranged 120° apart around γ. We have shown the relationships between chemical and mechanical events by imaging individual F1 molecules under an optical microscope. A new scheme emerges: as soon as a catalytic site binds ATP, the γ-subunit always turns the same face (interaction surface) to the β hosting that site; ∼80° rotation is driven by ATP binding; ∼40° rotation is induced by completion of hydrolysis [and/or phosphate release] in the site that bound ATP one step earlier.

Key Words

F1-ATPase motor protein single molecule biophysics rotary molecular motor streptavidin bead 

References

  1. 1.
    Svoboda, K., Schmidt, C.F., Schnapp, B.J., and Block, S.M. (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727.CrossRefPubMedGoogle Scholar
  2. 2.
    Mehta, A.D., Rock, R.S., Rief, M., Spudich, J.A., Mooseker, M.S., and Cheney, R. (1999) Myosin-V is a processive actin-based motor. Nature 400, 590–593.CrossRefPubMedGoogle Scholar
  3. 3.
    Tominaga, M., Kojima, H., Yokota, E., Orii, H., Nakamori, R., Katayama, E., Anson, M., Shimmen, T., and Oiwa, K. (2003) Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity. EMBO J. 22, 1263–1272.CrossRefPubMedGoogle Scholar
  4. 4.
    Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K., Jr. (1997) Direct observation of the rotation of F1-ATPase. Nature 386, 299–302.CrossRefPubMedGoogle Scholar
  5. 5.
    Yasuda, R., Noji, H., Kinosita, K., Jr., and Yoshida, M. (1998) F1-ATPase is a highly efficient molecular motor that rotates with discrete 120° steps. Cell 93, 1117–1124.CrossRefPubMedGoogle Scholar
  6. 6.
    Yasuda, R., Noji, H., Yoshida, M., Kinosita, K., Jr., and Itoh, H. (2001) Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410, 898–904.CrossRefPubMedGoogle Scholar
  7. 7.
    Nishizaka, T., Oiwa, K., Noji, H., Kimura, S., Muneyuki, E., Yoshida, M., and Kinosita, K., Jr. (2004) Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation. Nat. Struct. Mol. Biol. 11, 142–148.CrossRefPubMedGoogle Scholar
  8. 8.
    Matsui, T. and Yoshida, M. (1995) Expression of the wild-type and the Cys-/Trp-less α3β3γ complex of thermophilic F1-ATPase in Escherichia coli. Biochim. Biophys. Acta 1231, 139–146.CrossRefPubMedGoogle Scholar
  9. 9.
    Masaike, T., Mitome, N., Noji, H., Muneyuki, E., Yasuda, R., Kinosita, K., and Yoshida, M. (2000) Rotation of F1-ATPase and the hinge residues of the β subunit. J. Exp. Biol. 203 (Pt.1), 1–8.PubMedGoogle Scholar
  10. 10.
    Jault, J.M., Dou, C., Grodsky, N.B., Matsui, T., Yoshida, M., and Allison, W.S. (1996) The α3β3γ subcomplex of the F1-ATPase from the thermophilic bacillus PS3 with the βT165S substitution does not entrap inhibitory MgADP in a catalytic site during turnover. J. Biol. Chem. 271, 28818–28824.CrossRefPubMedGoogle Scholar
  11. 11.
    Dou, C., Fortes, P.A., and Allison, W.S. (1998) The α3(βY341W)3γ subcomplex of the F1-ATPase from the thermophilic Bacillus PS3 fails to dissociate ADP when MgATP is hydrolyzed at a single catalytic site and attains maximal velocity when three catalytic sites are saturated with MgATP. Biochemistry 37, 16757–16764.CrossRefPubMedGoogle Scholar
  12. 12.
    Ren, H. and Allison, W.S. (2000) Substitution of betaGlu201 in the α3β3γ subcomplex of the F1-ATPase from the thermophilic Bacillus PS3 increases the affinity of catalytic sites for nucleotides. J. Biol. Chem. 275, 10057–10063.CrossRefPubMedGoogle Scholar
  13. 13.
    Mitome, N., Ono, S., Suzuki, T., Shimabukuro, K., Muneyuki, E., and Yoshida, M. (2002) The presence of phosphate at a catalytic site suppresses the formation of the MgADP-inhibited form of F1-ATPase. Eur. J. Biochem. 269, 53–60.CrossRefPubMedGoogle Scholar
  14. 14.
    Adachi, K., Noji, H., and Kinosita, K., Jr. (2003) Single-molecule imaging of rotation of F1-ATPase. Methods Enzymol. 361, 211–227.CrossRefPubMedGoogle Scholar
  15. 15.
    Noji, H., Bald, D., Yasuda, R., Itoh, H., Yoshida, M., and Kinosita, K., Jr. (2001) Purine but not pyrimidine nucleotides support rotation of F1-ATPase. J. Biol. Chem. 276, 25480–25486.CrossRefPubMedGoogle Scholar
  16. 16.
    Cantarero, L.A., Butler, J.E., and Osborne, J.W. (1980) The adsorptive characteristics of proteins for polystyrene and their significance in solid-phase imunoassays. Anal. Biochem. 105, 375–382.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Takayuki Nishizaka
    • 1
    • 2
  • Kana Mizutani
    • 1
  • Tomoko Masaike
    • 1
  1. 1.Department of PhysicsGakushuin UniversityTokyoJapan
  2. 2.Precursory Research for Embryonic Science and TechnologyJapan Science and Technology AgencySaitamaJapan

Personalised recommendations