Advertisement

Enrichment and Disassembly of Ectoplasmic Specializations in the Rat Testis

  • Julian A. Guttman
  • Kuljeet S. Vaid
  • A. Wayne Vogl
Part of the Methods in Molecular Biology™ book series (MIMB, volume 392)

Abstract

Ectoplasmic specializations are testis specifi c intercellular adhesion junctions found in Sertoli cells. They are tripartite structures consisting of the plasma membrane of the Sertoli cell, a submembrane layer of actin fi laments and an attached cistern of endoplasmic reticulum. Ectoplasmic specializations occur in areas of attachment to spermatids and as part of the basal junction complex between neighboring Sertoli cells. They are functionally related to a number of fundamental events that occur during spermatogenesis, including attachment and then release of developing sperm cells and the translocation of spermatocytes through the blood-testis barrier. The structures may contain viable molecular targets for the development of contraceptives. Here we describe techniques for obtaining, from rat testes, testicular fractions enriched for spermatids with attached ectoplasmic specializations and for disassembling the complexes with gelsolin to obtain supernatants enriched for plaque components. The techniques involve stripping the epithelium from tubule walls, mechanically fragmenting the epithelium, using step sucrose gradients to enrich for spermatids with attached junction plaques, and then incubating with exogenous gelsolin to release plaque components into solution.

Key Words

Ectoplasmic specializations adhesion junctions Sertoli cells Testis 

References

  1. 1.
    Palombi, F., Salanova, M., Tarone, G., Farini, D., and Stefanini, M. (1992) Distribution of β1 integrin subunit in rat seminiferous epithelium. Biol. Reprod. 47, 1173–1182.CrossRefPubMedGoogle Scholar
  2. 2.
    Salanova, M., Stefanini, M., De Curtis, I., and Palombi, F. (1998) Junction contacts between Sertoli cells in normal and aspermatogenic rat seminiferous epithelium contain α6β1 integrins, and their formation is controlled by follicle-stimulating hormone. Biol. Reprod. 58, 371–378.CrossRefPubMedGoogle Scholar
  3. 3.
    Ozaki-Kuroda, K., Nakanishi, H., Ohta, H., Tanaka, H., Kurihara, H., Mueller, S., Irie, K., Ikeda, W., Sakai, T., Wimmer, E., Nishimune, Y., and Takai, Y. (2002) Nectin couples cell-cell adhesion and the actin scaffold at heterotypic testicular junctions. Curr. Biol. 12, 1145–1150.CrossRefPubMedGoogle Scholar
  4. 4.
    Gliki, G., Ebnet, K., Aurrand-Lions, M., Imhof, B.A., and Adams, R.H. (2004) Spermatid differentiation requires the assembly of a cell polarity complex down-stream of junction adhesion molecule-C. Nature 431, 320–324.CrossRefPubMedGoogle Scholar
  5. 5.
    Johnson, K.J. and Boekelheide, K. (2002a) Dynamic testicular adhesion junctions are immunologically unique. I. Localization of p120 catenin in rat testis. Biol. Reprod. 66, 983–991.CrossRefPubMedGoogle Scholar
  6. 6.
    Johnson, K.J. and Boekelheide, K. (2002b) Dynamic testicular adhesion junctions are immunologically unique. II. Localization of classic cadherins in rat testis. Biol. Reprod. 66, 992–1000.CrossRefPubMedGoogle Scholar
  7. 7.
    Yan, H.H.N. and Cheng, C.Y. (2005) Blood-testis barrier dynamics are regulated by an engagement/disengagement mechanism between tight and adherens junctions via peripheral adaptors. Proc. Natl. Acad. Sci. USA 102, 11722–11727.CrossRefPubMedGoogle Scholar
  8. 8.
    Siu, M.K.Y. and Cheng, C.Y. (2004) Interactions of proteases, protease inhibitors, and the β1 integrin/laminin γ3 protein complex in the regulation of ectoplasmic specialization dynamics in the rat testis. Biol. Reprod. 70, 945–964.CrossRefPubMedGoogle Scholar
  9. 9.
    Grove, B.D. and Vogl, A.W. (1989) Sertoli cell ectoplasmic specializations: a type of actin-associated adhesion junction? J. Cell Sci. 93, 309–323.PubMedGoogle Scholar
  10. 10.
    Franke, W.W., Grund, C., Fink, Al, Weber, K., Jockusch, B.M., Zentgraf, H., and Osborn, M. (1978) Location of actin in the microfi lament bundles associated with the junctional specializations between Sertoli cells and spermatids. Biol. Cell 31, 7–14.Google Scholar
  11. 11.
    Bartles, J.R., Wierda, A., and Zheng, L. (1996) Identifi cation and characterization of espin, an actin-binding protein localized to the F-actin-rich junctional plaques of Sertoli cell ectoplasmic specializations. J. Cell Sci. 109, 1229–1239.PubMedGoogle Scholar
  12. 12.
    Velichkova, M., Guttman, J., Warren, C., Eng, L., Kline, K., Vogl, A.W., and Hasson, T. (2002) A human homologue of drosophila Kelch associates with myosin-VIIa in specialized adhesion junctions. Cell Motil. Cytoskelet. 51, 147–164.CrossRefGoogle Scholar
  13. 13.
    Kai, M., Irie, M., Okutsu, T., Inoue, K., Ogonuki, N., Miki, H., Yokoyama, M., Migishima, R., Muguruma, K., Fujimura, H., Kohda, T., Ogura, A., Kaneko-Ishino, T., and Ishinob, F. (2004) The novel dominant mutation Dspd leads to a severe spermiogenesis defect in mice. Biol. Reprod. 70, 1213–1221.CrossRefPubMedGoogle Scholar
  14. 14.
    Mulholland, D.J., Dedhar, S., and Vogl, A.W. (2001) Rat seminiferous epithelium contains a unique junction (ectoplasmic specialization) with signaling properties both of cell/cell and cell/matrix junctions. Biol. Reprod. 64, 396–407.CrossRefPubMedGoogle Scholar
  15. 15.
    Guttman, J.A., Vaid, K.S., and Vogl, A.W. (2002) Rac1 is present in Sertoli cell structures (ectoplasmic specializations) associated with intercellular adhesion. FASEB J. 16, A1100.Google Scholar
  16. 16.
    Maekawa, M., Toyama, Y., Yasuda, M., Yagi, T., and Yuasa S. (2002) Fyn tyrosine kinase in Sertoli cells is involved in mouse spermatogenesis. Biol. Reprod. 66, 211–221.CrossRefPubMedGoogle Scholar
  17. 17.
    Guttman, J.A., Janmey, P., and Vogl, A.W. (2002) Gelsolin: evidence for a role in turnover of junction-related actin fi laments in Sertoli cells. J. Cell Sci. 115, 499–505.PubMedGoogle Scholar
  18. 18.
    Vaid, K.S., Guttman, J.A., and Vogl, A.W. (2004) A re-evaluation of gelsolin at ectoplasmic specializations in Sertoli cells: the infl uence of serum in blocking buffers on staining patterns. Mol. Biol. Cell 15 (suppl.), 133a.Google Scholar
  19. 19.
    Hasson, T., Walsh, J., Cable, J., Mooseker, M.S., Brown, S.D.M., and Steel, K.P. (1997) Effects of shaker-1 mutations on myosin-VIIa protein and mRNA expression. Cell Motil. Cytoskelet. 37, 127–138.CrossRefGoogle Scholar
  20. 20.
    Vogl, A.W. and Soucy, L.J. (1985) Arrangement and possible functions of actin fi lament bundles in ectoplasmic specializations of ground squirrel Sertoli cells. J. Cell Biol. 100, 814–825.CrossRefPubMedGoogle Scholar
  21. 21.
    Wong, C.-H., Xia, W., Lee, N.P.Y., Mruk, D.D., Lee, W.M., and Cheng, C.Y. (2005) Regulation of ectoplasmic specializations dynamics in the seminiferous epithelium by focal adhesion associated proteins in testosterone-suppressed rat testes. Endocrinology 146, 1192–1204.CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang, J., Wong, C.-H., Xia, W., Mruk, D.D., Lee, N.P.Y., Lee, W.M., and Cheng, Y.C. (2005) Regulation of Sertoli-germ cell adherens junction dynamics via changes in protein-protein interactions of the N-cadherin-β-catenin protein complex which are possibly mediated by c-Src and myotubularin-related protein 2: an in vivo study using an androgen suppression model. Endocrinology 146, 1268–1284.CrossRefPubMedGoogle Scholar
  23. 23.
    Grima, J., Silvestrini, B., and Chen, C.Y. (2001) Reversible inhibition of spermatogenesis in rats using a new male contraceptive, 1-(2,4-dichlorobenzyl)-indazole-3-carbohydrazide. Biol. Reprod. 64, 1500–1508.CrossRefPubMedGoogle Scholar
  24. 24.
    Cheng, C.Y., Silvestrini, B., Grima, J., Mo, M., Zhu, L., Johansson, E., Saso, L., Leone, M., Palmery, M., and Mruk, D. (2001) Two new male contraceptives exert their effects by depleting germ cells prematurely from the testis. Biol. Reprod. 65, 449–461.CrossRefPubMedGoogle Scholar
  25. 25.
    Lee, N.P.Y. and Cheng, C.Y. (2004) Ectoplasmic specialization, a testisspecifi c cell-cell actin-based adherens junction type: is this a potential target for male contraceptive development. Hum. Reprod. Update 10, 349–369.CrossRefPubMedGoogle Scholar
  26. 26.
    Xia, W. and Cheng, C.Y. (2005) TGF-β3 regulates anchoring junction dynamics in the seminiferous epithelium of the rat testis via the Ras/ERK signalling pathway: an in vivo study. Dev. Biol. 280, 321–343.CrossRefPubMedGoogle Scholar
  27. 27.
    Cheng, C.Y., Mruk, D., Silvestrini, B., Bonanomi, M., Wong, C.-H., Siu, M.K.Y., Lee, N.P.Y., Lui, W.-Y., and Mo, M-Y. (2005) AF-2364[1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide] is a potential male contraceptive: a review of recent data. Contraception 72, 251–261.CrossRefPubMedGoogle Scholar
  28. 28.
    Redenback, D.M., Boekelheide, K., and Vogl, A.W. (1992) Binding between mammalian spermatid-ectoplasmic specialization complexes and microtubules. Eur. J. Cell Biol. 59, 433–448.Google Scholar
  29. 29.
    Vogl, A.W. (1996) Spatially dynamic intercellular adhesion junction is coupled to a microtubule-based motility system: evidence from an in vitro binding assay. Cell Motil. Cytoskelet. 34, 1–12.CrossRefGoogle Scholar
  30. 30.
    Miller, M.G., Mulholland, D.J., and Vogl, A.W. (1999) Rat testis motor proteins associated with spermatid translocation (dynein) and spermatid fl agella (kinesin-II). Biol. Reprod. 60, 1047–1056.CrossRefPubMedGoogle Scholar
  31. 31.
    Guttman, J.A., Kimel, G.H., and Vogl, A.W. (2000) Dynein and plus-end microtubuledependent motors are associated with specialized Sertoli cell junction plaques (ectoplasmic specializations). J. Cell Sci. 113, 2167–2176.PubMedGoogle Scholar
  32. 32.
    Parvinen, M. and Vanha-Perttula, T. (1972) Identification and enzyme quantitation of the stages of the seminiferous epithelial wave in the rat. Anat. Rec. 174, 435–450.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Julian A. Guttman
    • 1
  • Kuljeet S. Vaid
    • 2
  • A. Wayne Vogl
    • 2
  1. 1.Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Cellular and Physiological SciencesUniversity of British Columbia, Faculty of MedicineVancouverCanada

Personalised recommendations