Advertisement

DNA Focusing Using Microfabricated Electrode Arrays

Protocol
  • 3.2k Downloads
Part of the Methods in Molecular Biology™ book series (MIMB, volume 544)

Summary

Focusing methods are a key component in many miniaturized DNA analysis systems because they enable dilute samples to be concentrated to detectable levels while being simultaneously confined within a specified volume inside the microchannel. In this chapter, we describe a focusing method based on a device design incorporating arrays of addressable on-chip microfabricated electrodes that can locally increase the concentration of DNA in solution by electrophoretically sweeping it along the length of a microchannel. By applying a low voltage (1–2 V) between successive pairs of neighboring electrodes, the intrinsically negatively charged DNA fragments are induced to migrate toward and collect at each anode, thereby allowing the quantity of accumulated DNA to be precisely metered. We have characterized the kinetics of this process, and found the response to be robust over a range of different sample compositions and buffer environments.

Key words

Focusing Injection Concentration Purification DNA Microfabrication Microfluidics 

Notes

Acknowledgments

We thank Prof. Mark A. Burns for helpful discussions and assistance with fabricating some of the microelectrode array chips. This work was supported in part under a grant from the National Science Foundation (CTS-0554108).

References

  1. 1.
    Manz, A., Harrison, D.J., Verpoorte, E.M.J., Fettinger, J.C., Paulus, A., Ludi, H., Widmer, H.M. (1992). Planar chips technology for miniaturization and integration of separation techniques into monitoring systems – capillary electrophoresis on a chip. J. Chromatogr. 593, 253–258.CrossRefGoogle Scholar
  2. 2.
    Harrison, D.J., Fluri, K., Seiler, K., Fan, Z.H., Effenhauser, C.S., Manz, A. (1993). Micromachining a miniaturized capillary electrophoresis-based chemical-analysis system on a chip. Science 261, 895–897.CrossRefGoogle Scholar
  3. 3.
    Harrison, D.J., Manz, A., Fan, Z.H., Ludi, H., Widmer, H.M. (1992). Capillary electropho-resis and sample injection systems integrated on a planar glass chip. Anal. Chem. 64, 1926–1932.CrossRefGoogle Scholar
  4. 4.
    Effenhauser, C.S., Manz, A., Widmer, H.M. (1993). Glass chips for high-speed capillary elec-trophoresis separations with submicrometer plate heights. Anal. Chem. 65, 2637–2642.CrossRefGoogle Scholar
  5. 5.
    Jacobson, S.C., Hergenroder, R., Koutny, L.B., Warmack, R.J., Ramsey, J.M. (1994). Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices. Anal. Chem. 66, 1107–1113.CrossRefGoogle Scholar
  6. 6.
    Khandurina, J., Jacobson, S.C., Waters, L.C., Foote, R.S., Ramsey, J.M. (1999). Microfabricated porous membrane structure for sample concentration and electrophoretic analysis. Anal. Chem. 71, 1815–1819.CrossRefGoogle Scholar
  7. 7.
    Song, S., Singh, A.K., Kirby, B.J. (2004). Electrophoretic concentration of proteins at laser-patterned nanoporous membranes in microchips. Anal. Chem. 76, 4589–4592.CrossRefGoogle Scholar
  8. 8.
    Lin, Y.C., Ho, H.C., Tseng, C.K., Hou, S.Q. (2001). A poly-methylmethacrylate electrophoresis microchip with sample preconcentrator. J. Micromech. Microeng. 11, 189–194.CrossRefGoogle Scholar
  9. 9.
    Lapos, J.A., Ewing, A.G. (2000). Injection of fluorescently labeled analytes into microfabricated chips using optically gated electrophoresis. Anal. Chem. 72, 4598–4602.CrossRefGoogle Scholar
  10. 10.
    Roddy, E.S., Lapos, J.A., Ewing, A.G. (2003). Rapid serial analysis of multiple oligonucleotide samples using optically gated injection. J. Chromatogr. A 1004, 217–224.CrossRefGoogle Scholar
  11. 11.
    Zhang, C.X., Manz, A. (2001). Narrow sample channel injectors for capillary electrophoresis on microchips. Anal. Chem. 73, 2656–2662.CrossRefGoogle Scholar
  12. 12.
    Brahmasandra, S.N., Ugaz, V.M., Burke, D.T., Mastrangelo, C.H., Burns, M.A. (2001). Electrophoresis in microfabricated devices using photopolymerized polyacrylamide gels and electrode-defined sample injection. Electrophoresis 22, 300–311.CrossRefGoogle Scholar
  13. 13.
    Inoue, A., Ito, T., Makino, K., Hosokawa, K., Maeda, M. (2007). I-shaped microchannel array chip for parallel electrophoretic analyses. Anal. Chem. 79, 2168–2173.CrossRefGoogle Scholar
  14. 14.
    Lin, R., Burke, D.T., Burns, M.A. (2003). Selective extraction of size-fractionated DNA samples in microfabricated electrophoresis devices. J. Chromatogr. A 1010, 255–268.CrossRefGoogle Scholar
  15. 15.
    Lin, R., Burke, D.T., Burns, M.A. (2005). Addressable electric fields for size-fractionated sample extraction in microfluidic devices. Anal. Chem. 77, 4338–4347.CrossRefGoogle Scholar
  16. 16.
    Jacobson, S.C., Ramsey, J.M. (1995). Microchip electrophoresis with sample stacking. Electrophoresis 16, 481–486.CrossRefGoogle Scholar
  17. 17.
    Jung, B., Bharadwaj, R., Santiago, J.G. (2003). Thousandfold signal increase using field-amplified sample stacking for on-chip electrophoresis. Electrophoresis 24, 3476–3483.CrossRefGoogle Scholar
  18. 18.
    Kim, D.K., Kang, S.H. (2005). On-channel base stacking in microchip capillary gel electrophoresis for high-sensitivity DNA fragment analysis. J. Chromatogr. A 1064, 121–127.CrossRefGoogle Scholar
  19. 19.
    Kurnik, R.T., Boone, T.D., Nguyen, U., Ricco, A.J., Williams, S.J. (2003). Use of floating electrodes in transient isotachophoresis to increase the sensitivity of detection. Lab Chip 3, 86–92.CrossRefGoogle Scholar
  20. 20.
    Vazquez, M., McKinley, G., Mitnik, L., Desmarais, S., Matsudaira, P., Ehrlich, D. (2002). Electrophoresis using ultra-high voltages. J. Chromatogr. B 779, 163–171.CrossRefGoogle Scholar
  21. 21.
    Huang, X.J., Pu, Q.S., Fang, Z.L. (2001). Capillary electrophoresis system with flow injection sample introduction and chemiluminescence detection on a chip platform. Analyst 126, 281–284.CrossRefGoogle Scholar
  22. 22.
    Smith, E.M., Xu, H.W., Ewing, A.G. (2001). DNA separations in microfabricated devices with automated capillary sample introduction. Electrophoresis 22, 363–370.CrossRefGoogle Scholar
  23. 23.
    Slentz, B.E., Penner, N.A., Regnier, F. (2002). Sampling BIAS at channel junctions in gated flow injection on chips. Anal. Chem. 74, 4835–4840.CrossRefGoogle Scholar
  24. 24.
    Lee, N.Y., Yamada, M., Seki, M. (2004). Pressure-driven sample injection with quantitative liquid dispensing for on-chip electrophoresis. Anal. Sci. 20, 483–487.CrossRefGoogle Scholar
  25. 25.
    Backofen, U., Matysik, F.M., Lunte, C.E. (2002). A chip-based electrophoresis system with electrochemical detection and hydrodynamic injection. Anal. Chem. 74, 4054–4059.CrossRefGoogle Scholar
  26. 26.
    Asbury, C.L., Diercks, A.H., van den Engh, G. (2002). Trapping of DNA by dielectrophoresis. Electrophoresis 23, 2658–2666.CrossRefGoogle Scholar
  27. 27.
    Asbury, C.L., van den Engh, G. (1998). Trapping of DNA in nonuniform oscillating electric fields. Biophys. J. 74, 1024–1030.CrossRefGoogle Scholar
  28. 28.
    Chou, C.-F., Tegenfeldt, J.O., Bakajin, O., Chan, S.S., Cox, E.C., Darnton, N., Duke, T., Austin, R.H. (2002). Electrodeless dielectrophoresis of single- and double-stranded DNA. Biophys. J. 83, 2170–2179.CrossRefGoogle Scholar
  29. 29.
    Cannon, D.M., Kuo, T.C., Bohn, P.W., Sweedler, J.V. (2003). Nanocapillary array interconnects for gated analyte injections and electrophoretic separations in multilayer microfluidic architectures. Anal. Chem. 75, 2224–2230.CrossRefGoogle Scholar
  30. 30.
    Dai, J.H., Ito, T., Sun, L., Crooks, R.M. (2003). Electrokinetic trapping and concentration enrichment of DNA in a microfluidic channel. J. Am. Chem. Soc. 125, 13026–13027.CrossRefGoogle Scholar
  31. 31.
    Dhopeshwarkar, R., Sun, L., Crooks, R.M. (2005). Electrokinetic concentration enrichment within a microfluidic device using a hydrogel microplug. Lab Chip 5, 1148–1154.CrossRefGoogle Scholar
  32. 32.
    Wang, Y.-C., Stevens, A.L., Han, J. (2005). Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal. Chem. 77, 4293–4299.CrossRefGoogle Scholar
  33. 33.
    Shaikh, F.A., Ugaz, V.M. (2006). Collection, focusing, and metering of DNA in microchannels using addressable electrode arrays for portable low-power bioanalysis. Proc. Natl Acad. Sci. U. S. A. 103, 4825–4830.CrossRefGoogle Scholar
  34. 34.
    Heller, M.J. (2002). DNA microarray technology: devices, systems, and applications. Annu. Rev. Biomed. Eng. 4, 129–153.CrossRefGoogle Scholar
  35. 35.
    Heller, M.J., Forster, A.H., Tu, E. (2000). Active microelectronic chip devices which utilize controlled electrophoretic fields for multiplex DNA hybridization and other genomic applications. Electrophoresis 21, 157–164.CrossRefGoogle Scholar
  36. 36.
    Beckers, J.L. (2000). Window optimization in isotachophoresis superimposed on capillary zone electrophoresis. Electrophoresis 21, 2788–2796.CrossRefGoogle Scholar
  37. 37.
    Stellwagen, N.C., Gelfi, C., Righetti, P.G. (1997). The free solution mobility of DNA. Biopolymers 42, 687–703.CrossRefGoogle Scholar
  38. 38.
    Stellwagen, E., Stellwagen, N.C. (2003). Probing the electrostatic shielding of DNA with capil-lary electrophoresis. Biophys. J. 84, 1855–1866.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Artie McFerrin Department of Chemical EngineeringTexas A&M University, College StationUSA

Personalised recommendations