Skip to main content

DNA Focusing Using Microfabricated Electrode Arrays

  • Protocol
  • First Online:
  • 3643 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 544))

Summary

Focusing methods are a key component in many miniaturized DNA analysis systems because they enable dilute samples to be concentrated to detectable levels while being simultaneously confined within a specified volume inside the microchannel. In this chapter, we describe a focusing method based on a device design incorporating arrays of addressable on-chip microfabricated electrodes that can locally increase the concentration of DNA in solution by electrophoretically sweeping it along the length of a microchannel. By applying a low voltage (1–2 V) between successive pairs of neighboring electrodes, the intrinsically negatively charged DNA fragments are induced to migrate toward and collect at each anode, thereby allowing the quantity of accumulated DNA to be precisely metered. We have characterized the kinetics of this process, and found the response to be robust over a range of different sample compositions and buffer environments.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Manz, A., Harrison, D.J., Verpoorte, E.M.J., Fettinger, J.C., Paulus, A., Ludi, H., Widmer, H.M. (1992). Planar chips technology for miniaturization and integration of separation techniques into monitoring systems – capillary electrophoresis on a chip. J. Chromatogr. 593, 253–258.

    Article  CAS  Google Scholar 

  2. Harrison, D.J., Fluri, K., Seiler, K., Fan, Z.H., Effenhauser, C.S., Manz, A. (1993). Micromachining a miniaturized capillary electrophoresis-based chemical-analysis system on a chip. Science 261, 895–897.

    Article  CAS  Google Scholar 

  3. Harrison, D.J., Manz, A., Fan, Z.H., Ludi, H., Widmer, H.M. (1992). Capillary electropho-resis and sample injection systems integrated on a planar glass chip. Anal. Chem. 64, 1926–1932.

    Article  CAS  Google Scholar 

  4. Effenhauser, C.S., Manz, A., Widmer, H.M. (1993). Glass chips for high-speed capillary elec-trophoresis separations with submicrometer plate heights. Anal. Chem. 65, 2637–2642.

    Article  CAS  Google Scholar 

  5. Jacobson, S.C., Hergenroder, R., Koutny, L.B., Warmack, R.J., Ramsey, J.M. (1994). Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices. Anal. Chem. 66, 1107–1113.

    Article  CAS  Google Scholar 

  6. Khandurina, J., Jacobson, S.C., Waters, L.C., Foote, R.S., Ramsey, J.M. (1999). Microfabricated porous membrane structure for sample concentration and electrophoretic analysis. Anal. Chem. 71, 1815–1819.

    Article  CAS  Google Scholar 

  7. Song, S., Singh, A.K., Kirby, B.J. (2004). Electrophoretic concentration of proteins at laser-patterned nanoporous membranes in microchips. Anal. Chem. 76, 4589–4592.

    Article  CAS  Google Scholar 

  8. Lin, Y.C., Ho, H.C., Tseng, C.K., Hou, S.Q. (2001). A poly-methylmethacrylate electrophoresis microchip with sample preconcentrator. J. Micromech. Microeng. 11, 189–194.

    Article  CAS  Google Scholar 

  9. Lapos, J.A., Ewing, A.G. (2000). Injection of fluorescently labeled analytes into microfabricated chips using optically gated electrophoresis. Anal. Chem. 72, 4598–4602.

    Article  CAS  Google Scholar 

  10. Roddy, E.S., Lapos, J.A., Ewing, A.G. (2003). Rapid serial analysis of multiple oligonucleotide samples using optically gated injection. J. Chromatogr. A 1004, 217–224.

    Article  CAS  Google Scholar 

  11. Zhang, C.X., Manz, A. (2001). Narrow sample channel injectors for capillary electrophoresis on microchips. Anal. Chem. 73, 2656–2662.

    Article  CAS  Google Scholar 

  12. Brahmasandra, S.N., Ugaz, V.M., Burke, D.T., Mastrangelo, C.H., Burns, M.A. (2001). Electrophoresis in microfabricated devices using photopolymerized polyacrylamide gels and electrode-defined sample injection. Electrophoresis 22, 300–311.

    Article  CAS  Google Scholar 

  13. Inoue, A., Ito, T., Makino, K., Hosokawa, K., Maeda, M. (2007). I-shaped microchannel array chip for parallel electrophoretic analyses. Anal. Chem. 79, 2168–2173.

    Article  CAS  Google Scholar 

  14. Lin, R., Burke, D.T., Burns, M.A. (2003). Selective extraction of size-fractionated DNA samples in microfabricated electrophoresis devices. J. Chromatogr. A 1010, 255–268.

    Article  CAS  Google Scholar 

  15. Lin, R., Burke, D.T., Burns, M.A. (2005). Addressable electric fields for size-fractionated sample extraction in microfluidic devices. Anal. Chem. 77, 4338–4347.

    Article  CAS  Google Scholar 

  16. Jacobson, S.C., Ramsey, J.M. (1995). Microchip electrophoresis with sample stacking. Electrophoresis 16, 481–486.

    Article  CAS  Google Scholar 

  17. Jung, B., Bharadwaj, R., Santiago, J.G. (2003). Thousandfold signal increase using field-amplified sample stacking for on-chip electrophoresis. Electrophoresis 24, 3476–3483.

    Article  CAS  Google Scholar 

  18. Kim, D.K., Kang, S.H. (2005). On-channel base stacking in microchip capillary gel electrophoresis for high-sensitivity DNA fragment analysis. J. Chromatogr. A 1064, 121–127.

    Article  CAS  Google Scholar 

  19. Kurnik, R.T., Boone, T.D., Nguyen, U., Ricco, A.J., Williams, S.J. (2003). Use of floating electrodes in transient isotachophoresis to increase the sensitivity of detection. Lab Chip 3, 86–92.

    Article  CAS  Google Scholar 

  20. Vazquez, M., McKinley, G., Mitnik, L., Desmarais, S., Matsudaira, P., Ehrlich, D. (2002). Electrophoresis using ultra-high voltages. J. Chromatogr. B 779, 163–171.

    Article  CAS  Google Scholar 

  21. Huang, X.J., Pu, Q.S., Fang, Z.L. (2001). Capillary electrophoresis system with flow injection sample introduction and chemiluminescence detection on a chip platform. Analyst 126, 281–284.

    Article  CAS  Google Scholar 

  22. Smith, E.M., Xu, H.W., Ewing, A.G. (2001). DNA separations in microfabricated devices with automated capillary sample introduction. Electrophoresis 22, 363–370.

    Article  CAS  Google Scholar 

  23. Slentz, B.E., Penner, N.A., Regnier, F. (2002). Sampling BIAS at channel junctions in gated flow injection on chips. Anal. Chem. 74, 4835–4840.

    Article  CAS  Google Scholar 

  24. Lee, N.Y., Yamada, M., Seki, M. (2004). Pressure-driven sample injection with quantitative liquid dispensing for on-chip electrophoresis. Anal. Sci. 20, 483–487.

    Article  CAS  Google Scholar 

  25. Backofen, U., Matysik, F.M., Lunte, C.E. (2002). A chip-based electrophoresis system with electrochemical detection and hydrodynamic injection. Anal. Chem. 74, 4054–4059.

    Article  CAS  Google Scholar 

  26. Asbury, C.L., Diercks, A.H., van den Engh, G. (2002). Trapping of DNA by dielectrophoresis. Electrophoresis 23, 2658–2666.

    Article  CAS  Google Scholar 

  27. Asbury, C.L., van den Engh, G. (1998). Trapping of DNA in nonuniform oscillating electric fields. Biophys. J. 74, 1024–1030.

    Article  CAS  Google Scholar 

  28. Chou, C.-F., Tegenfeldt, J.O., Bakajin, O., Chan, S.S., Cox, E.C., Darnton, N., Duke, T., Austin, R.H. (2002). Electrodeless dielectrophoresis of single- and double-stranded DNA. Biophys. J. 83, 2170–2179.

    Article  CAS  Google Scholar 

  29. Cannon, D.M., Kuo, T.C., Bohn, P.W., Sweedler, J.V. (2003). Nanocapillary array interconnects for gated analyte injections and electrophoretic separations in multilayer microfluidic architectures. Anal. Chem. 75, 2224–2230.

    Article  CAS  Google Scholar 

  30. Dai, J.H., Ito, T., Sun, L., Crooks, R.M. (2003). Electrokinetic trapping and concentration enrichment of DNA in a microfluidic channel. J. Am. Chem. Soc. 125, 13026–13027.

    Article  CAS  Google Scholar 

  31. Dhopeshwarkar, R., Sun, L., Crooks, R.M. (2005). Electrokinetic concentration enrichment within a microfluidic device using a hydrogel microplug. Lab Chip 5, 1148–1154.

    Article  CAS  Google Scholar 

  32. Wang, Y.-C., Stevens, A.L., Han, J. (2005). Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal. Chem. 77, 4293–4299.

    Article  CAS  Google Scholar 

  33. Shaikh, F.A., Ugaz, V.M. (2006). Collection, focusing, and metering of DNA in microchannels using addressable electrode arrays for portable low-power bioanalysis. Proc. Natl Acad. Sci. U. S. A. 103, 4825–4830.

    Article  CAS  Google Scholar 

  34. Heller, M.J. (2002). DNA microarray technology: devices, systems, and applications. Annu. Rev. Biomed. Eng. 4, 129–153.

    Article  CAS  Google Scholar 

  35. Heller, M.J., Forster, A.H., Tu, E. (2000). Active microelectronic chip devices which utilize controlled electrophoretic fields for multiplex DNA hybridization and other genomic applications. Electrophoresis 21, 157–164.

    Article  CAS  Google Scholar 

  36. Beckers, J.L. (2000). Window optimization in isotachophoresis superimposed on capillary zone electrophoresis. Electrophoresis 21, 2788–2796.

    Article  CAS  Google Scholar 

  37. Stellwagen, N.C., Gelfi, C., Righetti, P.G. (1997). The free solution mobility of DNA. Biopolymers 42, 687–703.

    Article  CAS  Google Scholar 

  38. Stellwagen, E., Stellwagen, N.C. (2003). Probing the electrostatic shielding of DNA with capil-lary electrophoresis. Biophys. J. 84, 1855–1866.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Mark A. Burns for helpful discussions and assistance with fabricating some of the microelectrode array chips. This work was supported in part under a grant from the National Science Foundation (CTS-0554108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor M. Ugaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Shaikh, F.A., Ugaz, V.M. (2009). DNA Focusing Using Microfabricated Electrode Arrays. In: Foote, R., Lee, J. (eds) Micro and Nano Technologies in Bioanalysis. Methods in Molecular Biology™, vol 544. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-483-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-483-4_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-40-4

  • Online ISBN: 978-1-59745-483-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics