Biomimetic Synthesis of Bimorphic Nanostructures

  • Joseph M. Slocik
  • Rajesh R. Naik
Part of the Methods in Molecular Biology™ book series (MIMB, volume 474)


The widespread interest in the use of biomimetic approaches for inorganic nanomaterial synthesis have led to the development of biomolecules (peptides, nucleic acids) as key components in material synthesis. Using biomolecules as building blocks, additional functionalities can be introduced by engineering multifunctional peptides that are capable of binding, nucleating, and assembling multiple materials at the nanoscale. We describe methodologies that exploit peptides for the synthesis of bimorphic nanostructures.

Key Words

Bimetallic bionanotechnology hybrid nanoparticles peptides phage display 


  1. 1.
    Blakemore R. (1975) Magnetoctactic bacteria. Science 190, 377.CrossRefGoogle Scholar
  2. 2.
    Round FE, Crawford RM, Mann DG. (1985)Magnetite Biomineralization and Magnetoreception in Organisms. Plenum Press, New York.Google Scholar
  3. 3.
    Kroger N, Deutzmann R, Sumper M. (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286, 6386.Google Scholar
  4. 4.
    Klaus T, Joerger R, Olsson E, Granqvist C-G. (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. U. S. A.96, 13611.CrossRefGoogle Scholar
  5. 5.
    Nair B, Pradeep T. (2002) Coalescence of nanoclusters formation of submicron crystallites by assisted byLactobacillus strains. Cryst. Growth Design 2, 293.CrossRefGoogle Scholar
  6. 6.
    Kroger N, Deutzmann R, Bergsdor C, Sumper M. (2000) Species-specific polyamines from diatoms control silica morphology. Proc. Natl. Acad. Sci. U. S. A.97, 14133.CrossRefGoogle Scholar
  7. 7.
    Round FE, Crawford RM, Mann RM. (1990)The Diatoms: Biology and Morphology of the Genera. Cambridge University Press, New York.Google Scholar
  8. 8.
    Kroger N, Sumper M. (2000)Biomineralization: From Biology to Biotechnology and Medical Applications. Wiley-VCH, Weinheim.Google Scholar
  9. 9.
    Douglas T, Stark VT. (2000) Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin. Inorg. Chem.39, 1828.CrossRefGoogle Scholar
  10. 10.
    Naik RR, Tomczak MM, Luckarift HR, Spain JC, Stone MO. (2004) Entrapment of enzymes and nanoparticles using biomimetically synthesized silica. Chem. Commun. 1684.Google Scholar
  11. 11.
    Knecht MR, Wright DW. (2004) Dendrimer-mediated formation of multicompo-nent nanospheres. Chem. Mater.16, 4890.CrossRefGoogle Scholar
  12. 12.
    Slocik JM, Naik RR. (2006) Biologically programmed synthesis of bimetallic nanostructures. Adv. Mater.18, 1988.CrossRefGoogle Scholar
  13. 13.
    Banerjee IA, Regan MR. (2006) Preparation of gold nanoparticle templated germania nanoshells. Mater. Lett.60, 915–918.CrossRefGoogle Scholar
  14. 14.
    Naik RR, Jones SE, Murray CJ, McAuliffe JC, Vaia RA, Stone MO. (2004) Peptide templates for nanoparticle synthesis derived from polymerase chain reaction-driven phage display. Adv. Func. Mater.14, 25.CrossRefGoogle Scholar
  15. 15.
    Bae W, Abdullah R, Mehra RK. (1998) Cysteine-mediated synthesis of CdS bionanocrystallites. Chemosphere 37, 363.CrossRefGoogle Scholar
  16. 16.
    Nguyen L, Kho R, Bae W, Mehra RK. (1999) Glutathione as a matrix for the synthesis of CdS nanocrystallites. Chemosphere 38, 155.CrossRefGoogle Scholar
  17. 17.
    Dameron CT, Winge DR. (1990) Characterization of peptide-coated cadmium-sulfide crystallites. Inorg. Chem. 29, 1343.CrossRefGoogle Scholar
  18. 18.
    Xie J, Lee J Y, Wang DIC. (2007) Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in HEPES buffer solution. Chem. Matter.19, 2823.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Joseph M. Slocik
    • 1
  • Rajesh R. Naik
    • 1
  1. 1.Air Force Research LabWright-Patterson Air Force Base

Personalised recommendations