Molecular Design of Performance Proteins With Repetitive Sequences

Recombinant Flagelliform Spider Silk as Basis for Biomaterials
  • Charlotte Vendrely
  • Christian Ackerschott
  • Lin Römer
  • Thomas Scheibel
Part of the Methods in Molecular Biology™ book series (MIMB, volume 474)


Most performance proteins responsible for the mechanical stability of cells and organisms reveal highly repetitive sequences. Mimicking such performance proteins is of high interest for the design of nanostructured biomaterials. In this article, flagelliform silk is exemplary introduced to describe a general principle for designing genes of repetitive performance proteins for recombinant expression in Escherichia coli . In the first step, repeating amino acid sequence motifs are reversely transcripted into DNA cassettes, which can in a second step be seamlessly ligated, yielding a designed gene. Recombinant expression thereof leads to proteins mimicking the natural ones. The recombinant proteins can be assembled into nanostructured materials in a controlled manner, allowing their use in several applications.

Key Words

Biomaterials recombinant production repetitive sequence spider silk proteins 



We thank members of the Fiberlab and Lasse Reefschläger for critical comments on the manuscript. This work was supported by grants from DFG (SCHE 603/4-2) and ARO (W911NF-06-1-0451).


  1. 1.
    Faux NG, Bottomley SP, Lesk AM, et al. (2005) Functional insights from the distribution and role of homopeptide repeat-containing proteins. Genome Res. 154, 537–551.CrossRefGoogle Scholar
  2. 2.
    Foster JA, Bruenger E, Gray WR, Sandberg LB. (1973) Isolation and amino acid sequences of tropoelastin peptides. J. Biol. Chem. 248, 2876–2879.Google Scholar
  3. 3.
    Fietzek PP, Kuhn K. (1975) Information contained in the amino acid sequence of the alpha1(I)-chain of collagen and its consequences upon the formation of the triple helix, of fibrils and crosslinks. Mol. Cell. Biochem. 8, 141–157.CrossRefGoogle Scholar
  4. 4.
    Xu M, Lewis RV. (1990) Structure of a protein superfiber: spider dragline silk. Proc. Natl. Acad. Sci. U. S. A. 87, 7120–7124.CrossRefGoogle Scholar
  5. 5.
    Gosline JM, Guerette PA, Ortlepp CS, Savage KN. (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 202, 3295–3303.Google Scholar
  6. 6.
    Vollrath F. (2000) Strength and structure of spiders' silks. J. Biotechnol. 74, 67–83.Google Scholar
  7. 7.
    Gosline JM, Lillie M, Carrington E, Guerette P, Ortlepp C, Savage K. (2002) Elastic proteins: biological roles and mechanical properties Phil. Trans. R. Soc. Lond. B. 357, 121–132.CrossRefGoogle Scholar
  8. 8.
    Bini E, Knight DP, Kaplan DL. (2004) Mapping domain structures in silks from insects and spiders related to protein assembly. J. Mol. Biol. 335, 27–40.CrossRefGoogle Scholar
  9. 9.
    Hu X, Vasanthavada K, Kohler K, et al. (2006) Molecular mechanisms of spider silk. Cell. Mol. Life. Sci. 63, 1986–1999.CrossRefGoogle Scholar
  10. 10.
    Anderson SO. (1970) Amino acid composition of spider silks. Comp. Biochem. Physiol. 35, 705–711.CrossRefGoogle Scholar
  11. 11.
    Work RW, Young CT. (1987) The amino acid compositions of major and minor ampullate silks of certain orb-web-building spiders (Araneae, Araneidea) J. Arachnol. 15, 65–80.Google Scholar
  12. 12.
    Lombardi SL, Kaplan DL. (1990) The amino acid composition of major ampullate gland silk (dragline) of Nephila clavipes (Araneae, Tetragnathidae). J. Arachnol. 18, 297–306.Google Scholar
  13. 13.
    Hayashi CY, Lewis RV. (1998) Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. J. Mol. Biol. 275, 773–784.CrossRefGoogle Scholar
  14. 14.
    Hayashi CY, Shipley NH, Lewis RV. (1999) Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int. J. Biol. Macrom. 24, 271–275.CrossRefGoogle Scholar
  15. 15.
    Simmons A, Ray E, Jelinski LW. (1994) Solid state13C NMR of N. clavipes dragline silk establishes structure and identity of crystalline regions. Macromolecules 27, 5235–5237.CrossRefGoogle Scholar
  16. 16.
    Hijirida DH, Do KG, Michal C, Wong S, Zax D, Jelinski LW. (1996)13C NMR of Nephila clavipes major ampullate silk gland. Biophys. J. 71, 3442–3447.CrossRefGoogle Scholar
  17. 17.
    Kümmerlen J, van Beek JD, Vollrath F, Meier BH. (1996) Local structure in spider dragline silk investigated by two-dimensional spin-diffusion NMR. Macromolecules 29, 2820–2928.CrossRefGoogle Scholar
  18. 18.
    Seidel A, Liivak O, Calve S, et al. (2000) Regenerated spider silk: processing, properties, and structure. Macromolecules 33, 775–780.CrossRefGoogle Scholar
  19. 19.
    van Beek JD, Hess S, Vollrath F, Meier BH. (2002) The molecular structure of spider dragline silk: folding and orientation of the protein backbone. Proc. Natl. Acad. Sci. U. S. A. 99, 10266–10271.CrossRefGoogle Scholar
  20. 20.
    Lawrence BA, Vierra CA, Moore AMF. (2004) Molecular and mechanical properties of major ampullate silk of the black widow spider, Latrodectus hesperus. Biomacromolecules 5, 689–685.CrossRefGoogle Scholar
  21. 21.
    Yang M, Nakazawa Y, Yamauchi K, Knight D, Asakura T. (2005) Structure of model peptides based on Nephila clavipes dragline silk spidroin (MaSp1) studied by13C cross polarization/magic angle spinning NMR. Biomacromolecules 6, 3220–3226.CrossRefGoogle Scholar
  22. 22.
    Zhou C, Leng B, Yao J, et al. (2006) Synthesis and characterization of multi-block copolymers based on spider dragline silk proteins. Biomacromolecules 7, 2415–2419.CrossRefGoogle Scholar
  23. 23.
    Simmons A, Michal C, Jelinski L. (1996) Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271, 84–87.CrossRefGoogle Scholar
  24. 24.
    Jelinski LW, Blye A, Liivak O, et al. (1999) Orientation, structure, wet-spinning, and molecular basis for supercontraction of spider dragline silk. Int. J. Biol. Macromol. 24, 197–201.CrossRefGoogle Scholar
  25. 25.
    Riekel C, Bränden C, Craig C, Ferrero C, Heidelbach F, Müller M. (1999) Aspects of X-ray diffraction on single spider fibers. Int. J. Biol. Macromol. 24, 179–186.CrossRefGoogle Scholar
  26. 26.
    Gosline JM, Denny MW, DeMont ME. (1984) Spider silk as rubber. Nature 309, 551–552.CrossRefGoogle Scholar
  27. 27.
    Termonia Y. (1994) Monte Carlo diffusion model of polymer coagulation. Macromolecules 27, 7378–7381.CrossRefGoogle Scholar
  28. 28.
    Zhou Y, Wu S, Conticello VP. (2001) Genetically directed synthesis and spectro-scopic analysis of a protein polymer derived from a flagelliform silk sequence. Biomacromolecules 2, 111–125.CrossRefGoogle Scholar
  29. 29.
    Ohgo K, Kawase T, Ashida J, Asakura T. (2006) Solid-state NMR analysis of a peptide (Gly-Pro-Gly-Gly-Ala)6-Gly derived from a flagelliform silk sequence of Nephila clavipes. Biomacromolecules 7, 1210–1214.CrossRefGoogle Scholar
  30. 30.
    Becker N, Oroudjev E, Mutz S, et al. (2003) Molecular nanosprings in spider capture-silk threads. Nat. Mater. 2, 278–283.CrossRefGoogle Scholar
  31. 31.
    Huemmerich D, Helsen CW, Quedzuweit S, Oschman J, Rudolph R, Scheibel T. (2004) Primary structure elements of spider dragline silks and their contribution to protein solubility. Biochemistry 43, 13604–13612.CrossRefGoogle Scholar
  32. 32.
    Scheibel T. (2004) Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microb. Cell. Fact. 3, 14–23.CrossRefGoogle Scholar
  33. 33.
    Vendrely C, Scheibel T. (2007) Biotechnological production of spider silk proteins enables new applications. Macromol. Biosci. 7, 401–409.CrossRefGoogle Scholar
  34. 34.
    Altman GH, Diaz F, Jakuba C, et al. (2003) Silk-based biomaterials. Biomaterials 24, 401–416.CrossRefGoogle Scholar
  35. 35.
    Huemmerich D, Slotta U, Scheibel T. (2006) Processing and modification of films made from recombinant spider silk proteins. Appl. Phys. A82, 219–222.CrossRefGoogle Scholar
  36. 36.
    Slotta U, Tammer M, Kremer F, Kölsch P, Scheibel T. (2006) Structural analysis of spider silk films. Supramol. Chem. 18, 465–472.CrossRefGoogle Scholar
  37. 37.
    Szela S, Avtges P, Valluzzi R, et al. (2000) Reduction-oxidation control of beta-sheet assembly in genetically engineered silk. Biomacromolecules 1, 534–542.CrossRefGoogle Scholar
  38. 38.
    Winkler S, Wilson D, Kaplan DL. (2000) Controlling β-sheet assembly in genetically engineered silk by enzymatic phosphorylation/dephosphorylation. Biochemistry 39, 12739–12746.CrossRefGoogle Scholar
  39. 39.
    Valluzzi R, Winkler S, Wilson D, Kaplan DL. (2002) Silk: molecular organization and control of assembly. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 165–167.CrossRefGoogle Scholar
  40. 40.
    Wong Po Foo C, Bini E, Huang J, Lee SY, Kaplan DL. (2006) Solution behaviour of synthetic silk peptides and modified recombinant silk proteins. Appl. Phys. A82, 193–203.CrossRefGoogle Scholar
  41. 41.
    Scheibel T, Parthasarathy R, Sawicki G, Lin X-M, Jaeger H, Lindquist S. (2003) Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl. Acad. Sci. U. S. A. 100, 4527–4532.CrossRefGoogle Scholar
  42. 42.
    Scheibel T. (2005) Protein fibers as performance proteins: new technologies and applications. Curr. Opin. Biotechnol. 16, 427–433.CrossRefGoogle Scholar
  43. 43.
    Scheller J, Henggeler D, Viviani A, Conrad U. (2004) Purification of spider silk-elastin from transgenic plants and application for human chondrocyte proliferation. Transgenic Res. 13, 51–57.CrossRefGoogle Scholar
  44. 44.
    Wong Po Foo C, Patwardhan S V, Belton DJ, et al. (2006) Novel nanocomposites from spider silk-silica fusion (chimeric) proteins Proc. Natl. Acad. Sci. U. S. A. 103, 9428–9433.CrossRefGoogle Scholar
  45. 45.
    Huang J, Wong C, George A, Kaplan DL. (2007) The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation. Biomaterials 28, 2358–2367.CrossRefGoogle Scholar
  46. 46.
    Cappello J, Crissman J, Dorman M, et al. (1990) Genetic engineering of structural protein polymers. Biotechnol. Prog. 6, 198–202.CrossRefGoogle Scholar
  47. 47.
    Yang M, Asakura T. (2005) Design, expression, and solid-state NMR characterization of silk-like materials constructed from sequences of spider silk, Samia cynthia ricini and Bombyx mori silk fibroins. J. Biochem. 137, 721–729.CrossRefGoogle Scholar
  48. 48.
    Bini E, Wong Po Foo C, Huang J, Karageorgiou V, Kitchel B, Kaplan DL. (2006) RGD-functionalized bioengineered spider silk dragline silk biomaterial. Biomacromolecules 7, 3139–3145.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Charlotte Vendrely
    • 1
  • Christian Ackerschott
    • 1
  • Lin Römer
    • 2
  • Thomas Scheibel
    • 2
  1. 1.Department Chemie, Lehrstuhl BiotechnologieTUMGarchingGermany
  2. 2.Lehrstuhl BiomaterialienUniversität BayreuthBayreuthGermany

Personalised recommendations