Skip to main content

Gene Targeting in Mouse Embryonic Stem Cells

  • Protocol
  • First Online:
Gene Knockout Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 530))

Abstract

The scientific value of a mouse model with a targeted mutation depends greatly upon how carefully the mutation has been engineered. Until recently, our ability to alter the mouse genome has been limited by both the lack of technologies to conditionally target a locus and by conventional cloning. The “cre/loxP” and “recombineering” technologies have overcome some of these limitations and have greatly enhanced our ability to manipulate the mouse genome in a sophisticated way. However, there are still some practical aspects that need to be considered to successfully target a specific genetic locus. Here, we describe the process to engineer a targeted mutation to generate a mouse model. We include a tutorial using the publicly available informatic tools that can be downloaded for processing the genetic information needed to generate a targeting vector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robertson EJ. Using embryonic stem cells to introduce mutations into the mouse germ line. Biol Reprod 1991;44:238–45.

    Article  PubMed  CAS  Google Scholar 

  2. Doetschman TC. Gene targeting in embryonic stem cells. Biotechnology 1991;16:89–101.

    PubMed  CAS  Google Scholar 

  3. Bradley A. Modifying the mammalian genome by gene targeting. Curr Opin Biotechnol 1991;2:823–9.

    Article  PubMed  CAS  Google Scholar 

  4. Capecchi MR. The new mouse genetics: altering the genome by gene targeting. Trends Genet 1989;5:70–6.

    Article  PubMed  CAS  Google Scholar 

  5. Godwin AR, Stadler HS, Nakamura K, Capecchi MR. Detection of targeted GFP-Hox gene fusions during mouse embryogenesis. Proc Natl Acad Sci USA 1998;95:13042–7.

    Article  PubMed  CAS  Google Scholar 

  6. Gagneten S, Le Y, Miller J, Sauer B. Brief expression of a GFP cre fusion gene in embryonic stem cells allows rapid retrieval of site-specific genomic deletions. Nucleic Acids Res 1997;25:3326–31.

    Article  PubMed  CAS  Google Scholar 

  7. Mansour SL, Thomas KR, Deng CX, Capecchi MR. Introduction of a lacZ reporter gene into the mouse int-2 locus by homologous recombination. Proc Natl Acad Sci USA 1990;87:7688–92.

    Article  PubMed  CAS  Google Scholar 

  8. Sauer B. Inducible gene targeting in mice using the Cre/lox system. Methods 1998;14:381–92.

    Article  PubMed  CAS  Google Scholar 

  9. Dymecki SM. A modular set of Flp, FRT and lacZ fusion vectors for manipulating genes by site-specific recombination. Gene 1996;171:197–201.

    Article  PubMed  CAS  Google Scholar 

  10. Dymecki SM. Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc Natl Acad Sci USA 1996;93:6191–6.

    Article  Google Scholar 

  11. Kuhn R, Schwenk F, Aguet M, Rajewsky K. Inducible gene targeting in mice. Science 1995;269:1427–9.

    Article  PubMed  CAS  Google Scholar 

  12. Liu P, Jenkins NA, Copeland NG. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res 2003;13:476–84.

    Article  PubMed  CAS  Google Scholar 

  13. Lee EC, Yu D, Martinez de Velasco J, et al. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 2001;73:56–65.

    Article  PubMed  CAS  Google Scholar 

  14. Copeland NG, Jenkins NA, Court DL. Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet 2001;2:769–79.

    Article  PubMed  CAS  Google Scholar 

  15. Muyrers JP, Zhang Y, Testa G, Stewart AF. Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res 1999;27:1555–7.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang Y, Buchholz F, Muyrers JP, Stewart AF. A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 1998;20:123–8.

    Article  PubMed  CAS  Google Scholar 

  17. Mural RJ, Adams MD, Myers EW, et al. A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome. Science 2002;296:1661–71.

    Article  PubMed  CAS  Google Scholar 

  18. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science 2001;291:1304–51.

    Article  PubMed  CAS  Google Scholar 

  19. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001;409:860–921.

    Article  PubMed  CAS  Google Scholar 

  20. Maglott D, Ostell J, Pruitt KD, Tatusova T. Entrez gene: gene-centered information at NCBI. Nucleic Acids Res 2007;35:D26–31.

    Article  PubMed  CAS  Google Scholar 

  21. Karolchik D, Baertsch R, Diekhans M, et al. The UCSC Genome Browser database. Nucleic Acids Res 2003;31:51–4.

    Article  PubMed  CAS  Google Scholar 

  22. Deng C, Capecchi MR. Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol Cell Biol 1992;12:3365–71.

    PubMed  CAS  Google Scholar 

  23. Hasty P, Rivera-Perez J, Chang C, Bradley A. Target frequency and integration pattern for insertion and replacement vectors in embryonic stem cells. Mol Cell Biol 1991;11:4509–17.

    PubMed  CAS  Google Scholar 

  24. Capecchi MR. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 2005;6:507–12.

    Article  PubMed  CAS  Google Scholar 

  25. Olson EN, Arnold HH, Rigby PW, Wold BJ. Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell 1996;85:1–4.

    Article  PubMed  CAS  Google Scholar 

  26. Hasty P, Rivera-Perez J, Bradley A. The length of homology required for gene targeting in embryonic stem cells. Mol Cell Biol 1991;11:5586–91.

    PubMed  CAS  Google Scholar 

  27. Simpson EM, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, Sharp JJ. Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nat Genet 1997;16:19–27.

    Article  Google Scholar 

  28. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292:154–6.

    Article  PubMed  CAS  Google Scholar 

  29. You Y, Bersgtram R, Klemm M, Nelson H, Jaenisch R, Schimenti J. Utility of C57BL/6 J × 129/SvJae embryonic stem cells for generating chromosomal deletions: tolerance to gamma radiation and microsatellite polymorphism. Mamm. Genome 1998;9:232–4.

    Article  PubMed  CAS  Google Scholar 

  30. Adams DJ, Quail MA, Cox T, et al. A genome-wide, end-sequenced 129 Sv BAC library resource for targeting vector construction. Genomics 2005;86:753–8.

    Article  PubMed  CAS  Google Scholar 

  31. Soriano P, Montgomery C, Geske R, Bradley A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 1991;64:693–702.

    Article  PubMed  CAS  Google Scholar 

  32. Capecchi MR. Altering the genome by homologous recombination. Science 1989;244:1288–92.

    Article  PubMed  CAS  Google Scholar 

  33. Yagi T, Ikawa Y, Yoshida K, et al. Homologous recombination at c-fyn locus of mouse embryonic stem cells with use of diphtheria toxin A-fragment gene in negative selection. Proc Natl Acad Sci USA 1990;87:9918–22.

    Article  PubMed  CAS  Google Scholar 

  34. Martens JH, O'Sullivan RJ, Braunschweig U, et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. Embo J 2005;24:800–12.

    Article  PubMed  CAS  Google Scholar 

  35. Kent WJ. BLAT – the BLAST-like alignment tool. Genome Res 2002;12:656–64.

    PubMed  CAS  Google Scholar 

  36. RepeatMasker. (Accessed at http://www.repeatmasker.org/)

  37. Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. VISTA: computational tools for comparative genomics. Nucleic Acids Res 2004;32:W273–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Eileen Southon for critical reading of the manuscript. “This research was supported by the Intramural Research Program of the NIH, National Cancer Institute.”

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tessarollo, L., Palko, M.E., Akagi, K., Coppola, V. (2009). Gene Targeting in Mouse Embryonic Stem Cells. In: Wurst, W., Kühn, R. (eds) Gene Knockout Protocols. Methods in Molecular Biology, vol 530. Humana Press. https://doi.org/10.1007/978-1-59745-471-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-471-1_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-26-8

  • Online ISBN: 978-1-59745-471-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics