Skip to main content

Rational Design and Optimization of Fed-Batch and Continuous Fermentations

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 389))

Abstract

This chapter provides rational approaches to design and optimize fed-batch and continuous fermentations of both Mut+ and Muts (methanol utilization plus and slow) Pichia pastoris strains. The methods are described in detail for glycerol batch, glycerol fed-batch, transition, and methanol fed-batch/mixed feed/continuous stirred tank reactor (CSTR) phases of the process based on glycerol and methanol consumption models. Cell density, broth volume, substrate feed rate, and the length of each phase are rationally designed to conduct runs with selected parameters for optimizing a process. The optimization is anchored by the impact of a specific growth rate/dilution time (for CSTRs) on productivity. Equations for simulation of a process with optimal parameters are derived for an optimal process design. This protocol can be used as a practical manual for process development of a P. pastoris recombinant fermentation, and also as a reference for fermentation of other microorganisms.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cereghino, G. P. and Cregg, J. M. (1999) Applications of yeast in biotechnology: protein production and genetic analysis. Curr. Opin. Biotechnol. 10, 422–427.

    Article  CAS  PubMed  Google Scholar 

  2. Cregg, J. M., Madden, K. R., Barringer, K. J., Thill, G. P., and Stillman, C. A. (1989) Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Mol. Cell. Biol. 9, 1316–1323.

    CAS  PubMed  Google Scholar 

  3. Romanos, M. A., Scorer, C. A., and Clare, J. J. (1992) Foreign gene expression in yeast: a review. Yeast 8, 423–488.

    Article  CAS  PubMed  Google Scholar 

  4. Cregg, J. M., Cereghino, J. L., Shi, J., and Higgins, D. R. (2000) Recombinant protein expression in Pichia pastoris. Mol. Biotechnol. 16, 23–52.

    Article  CAS  PubMed  Google Scholar 

  5. Invitrogen Co. (2002) Pichia Fermentation Process Guidelines, http://www.invitrogen.com . Invitrogen Co., San Diego, CA.

  6. Stratton, J., Chiruvolu, V., and Meagher, M. M. (1998) High cell-density fermentation, in Pichia Protocols, (Higgins, D. R. and Cregg, J. M., eds.), Humana, Totowa, NJ, pp. 107–120.

    Chapter  Google Scholar 

  7. Shimizu, H., Kozaki, Y., Kodama, H., and Shioya, S. (1999) Maximum production strategy for biodegradable copolymer P(HB-co-HV) in fed-batch culture of Alcaligenes eutrophus. Biotechnol. Bioeng. 62, 518–525.

    Article  CAS  PubMed  Google Scholar 

  8. Chim-Anage, P., Shioya, S., and Suga, K. (1991) Maximum histidine production by fed-batch culture of Brevibacterium flavum. J. Ferment. Bioeng. 71, 186–190.

    Article  CAS  Google Scholar 

  9. Lim, H. C., Tayeb, Y. J., Modak, J. M., and Bonte, P. (1986) Computational algorithms for optimal feed rates for a class of fed-batch fermentation: Numerical results for penicillin and cell mass production. Biotechnol. Bioeng. 28, 1408–1420.

    Article  CAS  PubMed  Google Scholar 

  10. Modak, J. M., Lim, H. C., and Tayeb, Y. J. (1986) General characteristics of optimal feed rate profiles for various fed-batch fermentation processes. Biotechnol. Bioeng. 28, 1396–1407.

    Article  CAS  PubMed  Google Scholar 

  11. Parulekar, S. J. and Lim, H. C. (1985) Modeling, optimization and control of semibatch bioreactors, in Advances in biochemical engineering/biotechnology, vol. 32 (Fiechter, A., ed.), Springer, Berlin, pp. 207–258.

    Google Scholar 

  12. O’connor, G. M., Sanchez-Riera, F., and Cooney, C. L. (1992) Design and evaluation of control strategies for high cell density fermentations. Biotechnol. Bioeng. 39, 293–304.

    Article  PubMed  Google Scholar 

  13. Yamane, T. and Shimizu, S. (1984) Fed-batch techniques in microbial processes in Advances in biochemical engineering biotechnology, vol. 30, (Fiechter, A., ed.), Springer, Berlin, pp. 147–194.

    Google Scholar 

  14. Shioya, S. (1992) Optimization and control in fed-batch bioreactors, in Advances in biochemical engineering biotechnology, vol. 46, (Fiechter, A., ed.), Springer, Berlin, pp. 111–142.

    Google Scholar 

  15. Fishman, V. M. and Biryukov, V. V. (1974) Kinetic model of secondary metabolite production and its use in computation of optimal conditions. Biotechnol. Bioeng. Symp. 4, Pt. 2, 647–662.

    Google Scholar 

  16. Yamane, T., Kume, T., and Sada, E. (1977) A simple optimization technique for fed-batch culture. J. Ferment. Technol. 55, 587–598.

    Google Scholar 

  17. Ohno, H. and Nakanishi, E. (1976) Optimal control of a semibatch fermentation. Biotechnol. Bioeng. 18, 847–864.

    Article  CAS  PubMed  Google Scholar 

  18. Yamane, T. and Tsukano, M. (1977) Effect of several substrate-feeding modes on production of extracellular beta-amylase by fed-batch culture of Bacillus megaterium. J. Ferment. Technol. 55, 233–242.

    CAS  Google Scholar 

  19. Zhang, W., Bevins, M. A., Plantz, B. A., Smith, L. A., and Meagher, M. M. (2000) Modeling Pichia pastoris growth on methanol and optimizing the production of a recombinant protein, the heavy-chain fragment C of botulinum neurotoxin, serotype A. Biotechnol. Bioeng. 70, 1–8.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, W., Inan, M., and Meagher, M. M. (2000) Fermentation strategies for recombinant protein expression in the methylotrophic yeast Pichia pastoris. Biotechnol. Bioprocess Eng. 5, 275–287.

    Article  CAS  Google Scholar 

  21. Hellwig, S., Robin, F., Drossard, J., Raven, N. P. G., Vaquero-Martin, C., Shively, J. E., and Fischer, R. (1999) Production of carcinoembryonic antigen (CEA) N-A3 domain in Pichia pastoris by fermentation. Biotechnol. Appl. Biochem. 30, 267–275.

    CAS  PubMed  Google Scholar 

  22. Hellwig, S., Emde, F., Raven, N. P. G., Henke, M., Van der Logt, P., and Fischer, R. (2001) Analysis of single-chain antibody production in Pichia pastoris using on-line methanol control in fed-batch and mixed-feed fermentations. Biotechnol. Bioeng. 74, 344–352.

    Article  CAS  PubMed  Google Scholar 

  23. Laroche, Y., Storme, V., De Meutter, J., Messens, J., and Lauwereys, M. (1994) High-level secretion and very efficient isotopic labeling of tick anticoagulant peptide (TAP) expressed in the methylotrophic yeast, Pichia pastoris. Biotechnology (N Y) 12, 1119–1124.

    Article  CAS  Google Scholar 

  24. Brierley, R. A. (1998) Secretion of recombinant human insulin-like growth factor I (IGF-I), in Pichia Protocols, vol. 103, (Cregg, J. M., ed.), Humana Press, Totowa, New Jersey, pp. 149–177.

    Chapter  Google Scholar 

  25. Siegel, R. S., and Brierley, R. A. (1989) Methylotrophic yeast Pichia pastoris produced in high-cell-density fermentations with high cell yields as vehicle for recombinant protein production. Biotechnol. Bioeng. 34, 403–404.

    Article  CAS  PubMed  Google Scholar 

  26. Waterham, H. R., Digan, M. E., Koutz, P. J., Lair, S. V., and Cregg, J. M. (1997) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186, 37–44.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, W., Smith, L. A., Plantz, B. A., and Meagher, M. M. (2002) Design of Methanol Feed Control in Pichia pastoris Fermentations Based upon a Growth Model. Biotechnol Prog. 18, 1392–1399.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, W., Sinha, J., Smith, L. A., Inan, M., and Meagher, M. M. (2005) Maximization of production of secreted recombinant proteins in Pichia pastoris fed-batch fermentation. Biotechnol. Prog. 21, 386–393.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Zhang, W., Inan, M., Meagher, M.M. (2007). Rational Design and Optimization of Fed-Batch and Continuous Fermentations. In: Cregg, J.M. (eds) Pichia Protocols. Methods in Molecular Biology, vol 389. Humana Press. https://doi.org/10.1007/978-1-59745-456-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-456-8_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-429-6

  • Online ISBN: 978-1-59745-456-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics